
NATURAL SCIENCES TRIPOS Part II

26 April 2017, 10.30 to 12.30

THEORETICAL PHYSICS 2

Answer all four questions. Each question consists of 5 parts, worth 5
marks each. The paper contains five sides and is accompanied by a
booklet giving values of constants and containing mathematical
formulae which you may quote without proof.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator.
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1 In second quantization two-body interactions U(x, x′) can be described by

Ĥint =
1

2

∫
dx dx′ψ̂†(x)ψ̂†(x′)U(x, x′)ψ̂(x′)ψ̂(x).

(a) Which algebraic relations do the operators ψ̂(x) satisfy for bosons
(fermions)? Which algebraic relations do the creation and annihilation
operators, â†α and âα, in some orthonormal single-particle basis {ϕα(x)}
satisfy for bosons (fermions)? How are the number operators defined?
What are their possible eigenvalues for bosons (fermions)?

(b) Consider as the single-particle basis, two orthonormal eigenfunctions of a
uniform 1D ring of length L, i.e. ϕ1(x) ∝ eik1x and ϕ2(x) ∝ eik2x. Show that
the bosonic Hamiltonian for the interaction potential U(x, x′) = gδ(x− x′) is

Ĥint = αn̂1(n̂1 − 1) + βn̂2(n̂2 − 1) + γn̂1n̂2 (?)

where n̂1 and n̂2 are number operators corresponding to single-particle states
|ϕ1〉 and |ϕ2〉 with real-space wavefunctions ϕ1(x) and ϕ2(x), respectively.

(c) Find the ground state of (?) for a fixed total number, n̂1 + n̂2 = N , and
repulsive interactions g > 0. If you have not solved (b), then find the ground
state of (?) for α = β < 0 and γ = 0, and a fixed total number, n̂1 + n̂2 = N .

(d) How would you take into account dispersion, i.e. that the energies of the
two single-particle states ϕ1(x) and ϕ2(x) could be different? Write down the
Hamiltonian including dispersion and its explicit matrix for N = 2 bosons.
Find the ground state of this Hamiltonian for repulsive interactions g > 0.

(e) Consider as the single-particle basis, two orthonormal eigenfunctions of
1D box potential of length L, i.e. ϕ1(x) ∝ sin k1x and ϕ2(x) ∝ sin k2x. Find
the Hamiltonian for the interaction potential U(x, x′) = gδ(x− x′) as in (b).
Which feature complicates your finding of the ground state similar to (c)?

Solution 1. (a) Bookwork. (b) Using the expansion ψ̂(x) = ϕ1(x)â1 + ϕ2(x)â2 we
obtain the Hamiltonian Ĥint = 1

2

∑
klmn Uklnma

†
ka
†
laman. The non-zero elements are

U1111 = U2222 = g, U1212 = U1221 = U2112 = U2121 = g for the single-particle states,
so Ĥint = g

2L
[n̂1(n̂1 − 1) + n̂2(n̂2 − 1) + 4n̂1n̂2]. (c) Using n̂2 = N − n̂1 we get

Ĥint = g
2L

[N2 −N + 2n̂1(N − n̂1)] so ground state twofold degenerate |N, 0〉,
|0, N〉. For α = β < 0 and γ = 0, Ĥint = α [N2 −N − 2n̂1(N − n̂1)] with the same
ground states. (d) Ĥ = E1n̂1 + E2n̂2 + Ĥint which is diagonal. For N = 2, this is a
3× 3 matrix. For E2 − E1 > 0 it is |N, 0〉, for E2 − E1 < 0 it is |0, N〉. (e) The
overlap integrals can be done using 2 sin2 x

2
= 1− cosx and orthogonality of

cosmx. The complication is that Ĥint is not diagonal in this basis: it contains
terms â†1â

†
1â2â2 with a coefficient

∫ L
0
dx sin2 knx sin2 kmx = L

4
(1 + 1

2
δmn).
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2 Consider the Hamiltonian of a harmonic oscillator with an external force F

H =
p2

2M
+
Mω2x2

2
− Fx. (??)

(a) Give the eigenstates and the eigenenergies of the Hamiltonian (??).

(b) What is the definition of the coherent state |α〉? What is its position
uncertainty? Show that |α〉 is the displaced vacuum, i.e. |α〉 = eαâ

†−α∗â |0〉,
where |0〉 is the ground state of the oscillator.

Hint : For [A,B] = α we have eAeB = eA+Beα/2 = eBeAeα.

(c) Assuming the system is in the ground state for F = 0 at time t = 0, when
the force is suddenly switched on F = F0, what is the state at the time t > 0?

A particle with spin 1
2

is in thermal equilibrium with a thermal bath at
absolute temperature T and under the influence of constant magnetic field B.

(d) Write down the density operator % describing the spin 1
2

in this situation.
In which limit is the state of the system pure? When is it maximally mixed?
In which situation would the notion of negative temperatures make sense?

(e) Calculate the expectation value of the spin component Ŝz for B = Bez.
Sketch the dependence of your result as a function of (inverse) temperature.

Solution 2. (a) Completing the square H = p2

2M
+ Mω2

2
(x− x0)2 − F 2

0

2Mω2 , we find

the eigenstates are displaced oscillator states with En = ~ωn− F 2
0

2Mω2 and x0 = F0

mω2 .

(b) Bookwork. â |α〉 = α |α〉. 〈α| x̂2 |α〉 − 〈α| x̂ |α〉2 = x2ZPF. (c) From part (a), we
know that the initial state is a coherent state |ψ(t = 0)〉 = |α0〉 with α0 = F0xZPF

~ω so
the dynamics is |ψ(t)〉 = |e−iωtα0〉. (d) % = 1

Z
e−βH and Z = tr % and H = −γB · S.

Negative temperatures correspond the spin pointing in the opposite direction. (e)

〈Ŝz〉 = tr Ŝz% = ~
2
e−γβB−e+γβB
e−γβB+e+γβB

, i.e. pure state T → 0 and totally mixed T →∞.
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(a) Show that the propagator of a one-dimensional time-independent
Hamiltonian with a complete set of energy eigenfunctions {ϕα(x)} and
eigenvalues {Eα} is

K(x, t|x′, t′) = θ(t− t′)
∑
α

ϕα(x)ϕ∗α(x′)e−iEα(t−t
′)/~.

(b) The Hamiltonian

H = − ~2

2m

∂2

∂x2
− gδ(x)

describes an attractive δ-function potential (g > 0). There is a single bound
state of the form

ϕ0(x) =
√
κ e−κ|x|.

Find κ and the energy E0 of the bound state.

(c) Find the phase shifts δeven(k) and δodd(k) for scattering in the even and
odd channels at wavevector k.

(d) Show that the propagator K(0, T |0, 0) can be written

K(0, T |0, 0) = κe−iE0T/~ +

∫ ∞
−∞

dk

2π

k2

κ2 + k2
exp

(
−i~k

2T

2m

)
. (? ? ?)

(e) How does the expression (? ? ?) behave as T →∞?
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Solution 3.

(a) The propagator is

K(x, t|x′, t′) = θ(t− t′) 〈x|U(t, t′)|x′〉 .

Writing

U(t, t′) = e−iH(t−t′)/~ =
∑
α

|ϕα〉 〈ϕα| e−iEα(t−t
′)/~

and taking matrix elements gives the answer.

(b) This is a question of subbing in

∂2xϕ0(x) = κ2ϕ0(x) + 2κδ(x),

from which we get κ = gm/~2 and E0 = ~2κ2/2m.

(c) δodd(k) = 0 as the odd wavefunctions vanish at the origin.

Write the even wavefunctions as

ψk,even(x) = cos(k|x| − δeven(k)).

Apply the boundary condition

~2

2m
ψ′(x)|+− = −gψ(0)

gives
~2k
m

sin δeven = g cos δeven

or
tan δeven = κ/k.

(d) This is a matter of substituting the results of (b) and (c) into the
formula from part (a). The odd channel doesn’t contribute. Each state in
the even channel contributes

cos2 δeven =
k2

k2 + κ2
.

The correct numerical factor requires a density of states calculation.
Alternatively, the shortcut is to note that κ→ 0 should recover the free
particle propagator, which fixes the factor.

(e) The best way to get at this is write the second term as( m

~2T

)3/2 ∫ ∞
−∞

du

2π

u2

κ2 +mu2/(~2T )
exp

(
−iu

2

2

)
.

Expanding the denominator and doing the integrals yields a series (actually
an asymptotic series) in T−m−1/2 for m = 1, 2, . . .. The behaviour at long
times is thus dominated by the term κe−iE0T/~ arising from the bound state.
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4 Consider the scattering problem in two dimensions.

(a) Show that the asymptotic form of the scattered wave in this case is

ψk(r) −→
r→∞

eikr cos θ +

√
i

kr
f(θ)eikr,

which defines the (dimensionless) scattering amplitude f(θ) in two
dimensions.

Hint: You may find it helpful to know that the form of the Laplacian in
polar coordinates (r, θ) is

∇2f =
1

r
∂r (r∂rf) +

1

r2
∂2θf.


(b) Show that the total cross-section, which has the units of length, is

λ =
1

k

∫
dθ|f(θ)|2.

(c) Show that the 2D plane wave has the expansion

exp (ikr cos θ) =
∞∑

m=−∞

amJm(kr)eimθ,

where Jm(ρ) is the Bessel function satisfying

ρ2
d2

dρ2
Jm + ρ

d

dρ
Jm +

(
ρ2 −m2

)
Jm = 0,

and am are some coefficients to be determined below.

(d) Given the behaviour

Jm(ρ)→ ρm

2mm!
as ρ→ 0,

find the coefficients am in the previous part.

(e) The asymptotic form of the scattered wave can be written

ψk(r) −→
r→∞

∞∑
m=0

√
2

πkr
εmi

meiδm cos(mθ) cos
(
kr − mπ

2
− π

4
+ δm

)
where ε0 = 2 and εm 6=0 = 1. Find expressions for f(θ) and λ in terms of δm.
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Solution 4.

(a) The given asymptotic form satisfies

(
∇2 + k2

)
ψk =

√
i

k

(
f(θ)

4
+ f ′′(θ)

)
eikr

r5/2
.

The remainder on the RHS will be cancelled by subleading terms in the
asymptotic expansion.

(b) The non-oscillating terms in the flux

j = − i~
2m

(ψ∗∇ψ − ψ∇ψ∗)

are
~k
m

x̂ +
~|f(θ)|2

mr
r̂.

The probability / time into an angle dθ is ∝ (~/m)|f(θ)|2dθ while the
incident flux is ∝ ~k/m. The cross section is the ratio

dλ =
|f(θ)|2dθ

k
.

Integrating over θ gives the total cross section.

(c) We look for separable solutions of the Helmholtz equation[
∇2 + k2

]
Φ(r, θ) = 0,

where

∇2 =
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2
.

Separable solutions are then shown to have the form Φ(r, θ) = Jm(kr)eimθ.
The expansion of the plane wave then follows.

(d) This follows closely the 3D case. The key point is that a term (kr)meimθ

arises only from the mth order. Using the given asymptote and comparing
coefficients then gives am = im.

(e) We have

imeiδm cos
(
kr − mπ

2
− π

4
+ δm

)
=

1

2
(

out︷ ︸︸ ︷√
−ieikr+2δm +

in︷ ︸︸ ︷√
i(−1)me−ikr). (1)

The crucial part is to subtract the asymptotic form of the plane wave
expansion, which corresponds to setting δm = 0, to leave only the outgoing
wave. The scattering amplitude f(θ) can then be read off as

f(θ) =
∞∑
m=0

√
2

π
εme

iδm sin δm cos(mθ).
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Evaluating λ gives

λ =
4

k

∞∑
m=0

εm sin2 δm.

END OF PAPER
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