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THEORETICAL PHYSICS 2

Answer all four questions.

The approximate number of marks allotted to each part of a question is
indicated in the right margin where appropriate.

The paper contains five sides and is accompanied by a booklet giving
values of constants and containing mathematical formulae which
you may quote without proof.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator.
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1 Consider the following Hamiltonian where ĉ1 and ĉ2 are (spinless) fermions

H = −
[
t
(
ĉ†1ĉ2 + ĉ†2ĉ1

)
+∆

(
ĉ†1ĉ
†
2 + ĉ2ĉ1

)]
.

(a) Which algebraic relations do creation and annihilation operators satisfy
for bosons (fermions)? How are number operators defined? What are their
possible eigenvalues for bosons (fermions)? [5]

(b) Find the anti-commutation relations for the Majorana operators j = 1, 2

γAj = ĉj + ĉ†j γBj = −i(ĉj − ĉ†j).

Discuss if it is possible to define occupation numbers for Majorana fermions. [5]

(c) For t = ∆ 6= 0 show that the Hamiltonian given above can be written as

H = itγB1 γ
A
2 .

Find the time dependence (in the Heisenberg picture) for the two Majorana
operators that are not featured in this Hamiltonian, i.e. γA1 (t) and γB2 (t). [5]

(d) Verify the following operators have fermionic anti-commutation relations [4]

f̂1 = 1
2

(
γA1 + iγB2

)
f̂2 = 1

2

(
γB1 + iγA2

)
.

(e) For t = ∆ 6= 0 rewrite the Hamiltonian in (c) in terms of the operators f̂1
and f̂2. Determine the eigenvalues of the Hamiltonian and their degeneracy. [6]
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2 Consider scattering from a so-called delta-shell potential V (r) = V0δ(r −R).

(a) Write down the asymptotic solution to the 3D scattering problem. What
is the scattering amplitude, the differential and total scattering cross section?
In what sense is this an asymptotic solution rather than an exact solution? [5]

(b) Calculate the scattering amplitude for the delta-shell potential as given
above in the first Born approximation. [5]

(c) Starting from the differential equation with boundary condition u0(0) = 0

u′′0(r) + k2u0(r) =
2m

~2
V (r)u0(r),

find the phase shift δ0(k) for s-wave scattering as a function of wave vector k

k cot(kR + δ0)− k cot kR =
2mV0
~2

for a particle with mass m. [5]

(d) Determine from the result in (c) the scattering length a0 as a function of
V0. Sketch the function a0(V0), choosing the appropriate dimensionless units,
both in the repulsive and attractive case, and discuss its prominent features. [5]

(e) Compare the scattering amplitude obtained in the Born approximation
in (b) and in partial wave analysis in (c) and (d), which are given also here,

fBorn = −2mV0R sin qR

~2q
fs-wave = −

2mV0R
~2 R

1 + 2mV0R
~2

.

In which aspects do they differ? In which limit do you expect them to agree?
Show that they indeed lead to the same expression in that limit. [5]
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(a) Define the density matrix ρ. Show that ρ is hermitian and that tr[ρ] = 1.
State the condition on tr[ρ2] for pure and mixed states. [5]

(b) Consider the following Hamiltonian

H = −t
(
ĉ†1ĉ2 + ĉ†2ĉ1

)
describing spinless fermions that can move between two sites, where ĉ†1, ĉ1,
ĉ†2, and ĉ2 are the creation and annihilation operators for the sites 1 and 2.

For N = ĉ†1ĉ1 + ĉ†2ĉ2 = 1 determine the density matrix describing this
system in equilibrium with a thermal reservoir at temperature T . [5]

Obtain the T = 0 and T →∞ limits and check the properties stated in
part (a). [3]

Obtain the von Neumann entropy of the system at any temperature and
the low and high temperature limits. [2]

(c) Consider now that the one spinless fermion in the system above (C) is
coupled to another similar fermion in another two-state system (called B)
described by operators b†1, b1, b

†
2, and b2. If the state of the global system is

|Ψ〉 =

(
1

2
b†1c
†
1 +

1√
2
b†1c
†
2 +

1

2
b†2c
†
2

)
|0〉,

where |0〉 is the vacuum state, obtain the global density matrix. [5]

Compute the reduced density matrix for system C, and indicate how you
would compute its entanglement entropy. (This calculation is not required.) [5]
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4 Given a harmonic oscillator with associated Hamiltonian

H0 =
p2

2m
+

1

2
mω2x2,

where m is the mass of the oscillator and ω its angular frequency, and where x and
p are the position and linear-momentum operators.

(a) State the equations of motion for the operators x(t) and p(t) in the
Heisenberg picture and write down their general solution. Define the ladder
operators, a and a† (annihilation and creation operators), and obtain their
time dependence in the Heisenberg picture. [5]

(b) Consider that the Hamiltonian is suddenly modified at t = 0 to

H = H0 + γx

i.e. displacing both the rest position of the oscillator and the minimum value
of the harmonic potential. If the oscillator was in its ground state |0〉 prior
to the change, compute the expectation value of the energy after the change
with respect to the new potential energy minimum. Stating the expectation
values of the position (with respect to the new minimum) and momentum
operators just after the change. Using the solutions for x(t) and p(t) of part
(a), write down 〈x(t)〉 and 〈p(t)〉. [5]

(c) Using the fact that the Hamiltonian eigenstates after the displacement
relate to the old ones through a translation operator, |n′〉 = e−ipx0/~|n〉, and
using the following relation,

eAeB = eA+Be[A,B]/2 ,

derive the following expansion of the initial state |Ψ(0)〉 = |0〉 in terms of
new |n′〉 states just after the displacement [10]

|Ψ〉 =
∑
n′

1√
n!

(
mωx20

2~

)n/2

e−
mωx20

4~ |n′〉.

(d) Show that |Ψ〉 is an eigenstate of the annihilation operator for the
displaced oscillator,

a′|Ψ〉 = α|Ψ〉

and that it is so for any time t > 0. State the eigenvalue α. [5]

END OF PAPER
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