
NATURAL SCIENCES TRIPOS Part II

Wednesday 22 April 2020, 10.30 to 12.30

THEORETICAL PHYSICS 2

Answer all four questions.

The approximate number of marks allotted to each part of a question is
indicated in the right margin where appropriate.

The paper contains four sides and is accompanied by a booklet giving
values of constants and containing mathematical formulae which you
may quote without proof. (The booklet is available for separate down-
load.)

Please write answers in a manner that will
be suitable for scanning and uploading.

You will have 30 minutes after the end of the
examination to scan and upload the answers.

(See coversheet for further details.)
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1 A particle of mass M and energy E = ~2k2/2M scatters elastically from a
spherically symmetric potential V (r) which is zero for r > R0.

(a) State what is meant by partial wave analysis. Explain in general terms (without
mathematical detail) why scattering can be encoded in terms of phase shifts. [6]

(b) Writing the wavefunction for a particle with angular momentum quantum num-
bers ` and m` as

Ψ(r) = Y`,m`
(θ, φ)

u`(r)

r

where (r, θ, φ) are spherical polar co-ordinates, and Y`,m`
(θ, φ) is the spherical har-

monic, show that the function u`(r) satisfies [5][
− d2

dr2
+
`(`+ 1)

r2
+

2M

~2
V (r)

]
u`(r) = k2u`(r) .

[You may use ∇2 = 1
r2
∂r
(
r2 ∂

∂r

)
− L2

~2r2 where L2 is the squared total angular mo-
mentum operator.]

(c) Show that for ` = 0 the function u0(r) at large radii, r > R0, can be written as

u0(r) ∝ sin(kr + δ0) (?)

and explain the physical meaning of the phase shift δ0. [5]

A certain potential has a bound state for ` = 0 at an energy E = −EB with
EB positive.

(d) Show that for r > R0 the bound state wavefunction is of the form

uB0 (r) ∝ e−κr

and determine the value of κ. Hence show that, for EB � ~2/MR2
0 the bound state

wavefunction is mostly at r > R0. [4]

(e) Assuming EB � ~2/MR2
0, use orthogonality of the scattering state (?) with

uB0 (r), or otherwise, to determine the phase shift δ0 for low-energy scattering. [5][
Hint: In this limit, you can compute the overlap by considering R0 → 0 and
integrating the functions over r = 0→∞.

]
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2 (a) Write the density matrix in the {|↑〉, | ↓〉} basis for an ensemble of
spin-1/2 particles in each of the following situations: [6]

(i) each particle is in the state |ψ〉 = 1√
2
(|↑〉+ i|↓〉);

(ii) an equal statistical mixture of states |↑〉 and |↓〉;
(iii)an equal statistical mixture of states 1√

2
(|↑〉+ |↓〉) and 1√

2
(|↑〉− |↓〉).

(b) Which of the above situations are physically distinct? What observable
can be measured to differentiate them? Find the expectation of this observable
from the three density matrices. [5]
The spin operators are described by Pauli matrices in the {|↑〉, |↓〉} basis:

Sx =
~
2

(
0 1
1 0

)
, Sy =

~
2

(
0 −i
i 0

)
, Sz =

~
2

(
1 0
0 −1

)
.


Two spin-1/2 particles interact via the Hamiltonian

H = −2J(S1 · S2/~2 + 1/4) .

Writing the time-evolution operator U(t) = e−iHt/~ in the basis of states {|↑↑〉,
|↑↓〉, |↓↑〉, |↓↓〉} gives the matrix

U(t) =


eiθ 0 0 0
0 cos θ i sin θ 0
0 i sin θ cos θ 0
0 0 0 eiθ

 ,

where θ ≡ Jt/~.

(c) Suppose we prepare the system in the state |↑↓〉 at t = 0. Find the density
matrix at time t using ρ(t) = U(t)ρ(0)U †(t). What pure state does it describe? [5]

(d) Find the reduced density matrix ρred(t) describing the first spin by tracing
over the latter. [4]

(e) Find the entanglement entropy Sent(t) from the eigenvalues of ρred. When
is the entanglement minimised, and maximised? What are the corresponding
states of the total system? [5]
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3 (a) Consider a particle in a time-dependent harmonic well given by the
Hamiltonian

H(t) =
p2

2M
+

1

2
M(ω(t))2x2 .

Write the instantaneous Hamiltonian H(t) in terms of the ladder operators
a(t) and a†(t), where

a(t) =
1√
2

(
x

ξ(t)
+ i

ξ(t)

~
p

)
and ξ(t) ≡

√
~

Mω(t)
, (∗)

and state its eigenvalues. (You may directly quote the results.) [4]

(b) The particle is initially in the ground state |0〉 of H(t = 0). The frequency
ω(t) is ramped from ω0 to 2ω0 over an interval τ , i.e., ω(t) = ω0(1 + t/τ).
Without any calculation, argue what condition τ and ω0 must satisfy for the
ramp to be “slow” or adiabatic. What would be the final energy in this case? [4]

(c) By expressing x in terms of a0 and a†0, show that H(t) can be written as

H(t) = H0 +
1

4
~ω0

[(
ω(t)

ω0

)2
− 1

](
a0 + a†0

)2
,

where H0 is the Hamiltonian for t = 0 and a0 ≡ a(0).
[
Use (∗) at t = 0.

]
[4]

(d) Use this expression to find the final energy expectation 〈H(τ)〉 for a sudden
ramp, where the particle has no time react. Why is this energy different from
that in the adiabatic case?

[
Note: a0|0〉 = 0 and [a(t), a†(t)] = 1.

]
[5]

(e) At any point during the ramp, the state |ψ(t)〉 can be written as a super-
position of the instantaneous energy eigenstates |n〉t,

|ψ(t)〉 =
∞∑
n=0

cn(t)|n〉t ,

where the states are ordered in increasing energy. Assuming we start from the
ground state at t = 0, which of the coefficients cn(t) will always be zero? Use
symmetry arguments (no calculation required). [3]

(f) Use the time-dependent Schrödinger equation and the result

d|n〉t
dt

=
~ω0

2τ

∑
m 6=n

t〈m|
[
a(t) + a†(t)

]2|n〉t
En(t)− Em(t)

|m〉t

to write the equation of motion for the coefficients in the form

dcm(t)

dt
= Am(t)cm(t) +

∑
n 6=m

Bmn(t)cn(t) .

You do not need to evaluate inner products. Compare the frequency scales in
Am and Bmn to explain how the adiabaticity condition is recovered. [5]
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4 The Hamiltonian for a set of interacting bosons is Ĥ = Ĥkin + Ĥint where

Ĥkin = − ~2

2M

∫
d3r ψ̂†(r)∇2ψ̂(r) ,

Ĥint =
1

2

∫
d3r

∫
d3r′ ψ̂†(r)ψ̂†(r′)U(r − r′)ψ̂(r′)ψ̂(r) .

and the bosonic field operators, ψ̂†(r) and ψ̂(r), satisfy [ψ̂(r), ψ̂†(r′)] = δ3(r − r′) ,
[ψ̂(r), ψ̂(r′)] = [ψ̂†(r), ψ̂†(r′)] = 0 .

(a) The plane-waves φk(r) = 1√
V
eik·r provide an orthonormal basis of single-particle

states in a system of volume V . Show that the creation and annihilation operators for
these states, denoted by â†k and âk, satisfy [âk, â

†
k′ ] = δk,k′ , [âk, âk′ ] = [â†k, â

†
k′ ] = 0 ,

and that [8]

Ĥkin =
∑
k

~2|k|2

2M
â†kâk .

(b) Show that the interaction energy Ĥint can be written in terms of the density
operator ρ̂(r) ≡ ψ̂†(r)ψ̂(r), by combining both two-body and one-body terms. [4]

(c) Show that the Fourier transform of the density operator, ρ̂q ≡
∫
d3rρ̂(r)e−iq·r,

may be written [3]

ρ̂q =
∑
p

â†p−qâp .

Starting from the exact groundstate, |GS〉, approximate descriptions of the
low-energy excitations of Ĥ can be constructed by the variational states

|Ψq〉 =
1√
Sq

ρ̂q|GS〉 ,

with ρ̂q the Fourier transform of the density operator and Sq a normalization factor.
The variational energy can be shown to be

∆q =
1

2Sq

〈GS|
[
ρ̂†q,
[
Ĥ, ρ̂q

]]
|GS〉 .

(d) Show that |Ψq〉 is orthogonal to |GS〉 for q 6= 0, provided |GS〉 describes a state
of uniform particle density. [2]

(e) Explain why
[
Ĥint, ρ̂q

]
= 0. Hence show that[

Ĥ, ρ̂q

]
= −~2

M

∑
k

k · q â†k−q/2âk+q/2 .

Deduce an expression for the variational energy ∆q. [8][
You may use the following identity without proof:

[AB,CD] = A[B,C]D + AC[B,D] + [A,C]DB + C[A,D]B

]

END OF PAPER
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