
NATURAL SCIENCES TRIPOS Part II

Wednesday 28 April 2021, 2pm to 4pm

THEORETICAL PHYSICS 2

Answer all four questions.

The approximate number of marks allotted to each part of a question is
indicated in the right margin where appropriate.

The paper contains four sides and is accompanied by a booklet giving
values of constants and containing mathematical formulae which you
may quote without proof. (The booklet is available for separate down-
load.)

Please write answers in a manner that will
be suitable for scanning and uploading.

You will have 30 minutes after the end of the
examination to scan and upload the answers.
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1 A set of laser fields couple two electronic levels in an atom at position r =
(x, y), giving rise to a position-dependent effective potential

V(r) = V0

(
sinh y eikx

e−ikx − sinh y

)
expressed here in the basis of the two electronic levels.

Consider first the situation in which the atom is moved at a constant speed v
along the line y = 0, such that r(t) = (x, y) = (vt, 0).

(a) Determine the instantaneous energies E±(t) and instantaneous eigenstates |±, r(t)〉
for a stationary atom at the position r(t) = (x, y) = (vt, 0). [5]

(b) By expanding the wavefunction as

|Ψ(t)〉 = c+(t)|+, r(t)〉+ c−(t)|−, r(t)〉

and using the time-dependent Schrödinger equation, show that the electronic state
of the atom will evolve adiabatically for ~|〈−, r(t)| d

dt
|+, r(t)〉 � V0. Use your results

from (a) to deduce the condition on velocity v for which adiabaticity holds. [8]

Now consider the atom to have a mass m, and to move freely in the x, y-plane
under the Hamiltonian

H = − ~2

2m
∇2 ⊗ 1 + V(r)

where 1 is the identity operator in the space of the two electronic levels and V(r) is
the optical potential described above, whose local eigenstates are |±, r〉.

By expanding the wavefunction as

|Ψ(r)〉 = ψ+(r)|+, r〉+ ψ−(r)|−, r〉

and making the adiabatic assumption, the time-independent Schrödinger equation,
H|Ψ(r)〉 = E|Ψ(r)〉 can be written as the two equations

〈±, r|
[
− ~2

2m
∇2 + V(r)

]
ψ±(r)|±, r〉 = Eψ±(r) (?)

for the wavefunctions ψ±(r) describing atoms in the two energy levels.

(c) Show that the equations (?) lead to effective Hamiltonians H±ψ±(r) = Eψ±(r),
with

H± =
1

2m

(
~
i
∇ + ~A±

)2

+ V±(r)

where A±(r) = −i〈±, r|∇|±, r〉. Deduce a general expression for V±(r). [8]

(d) Outline the conditions under which the adiabaticity assumption leading to (?)
holds. [4]
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Solution 1. (a) On the line y = 0

V(x, y = 0) = V0

(
0 eikx

e−ikx 0

)
The energies are E±(x) = ±V0 and the states are

|±, x(t)〉 =
1√
2

(
1

±e−ikx

)
(b)

i~|ψ̇〉 = V|ψ〉

i~ċ+|+, t〉+ i~c+
d

dt
|+, t〉 = E+c+|+, t〉

i~ċ−|−, t〉+ i~c−
d

dt
|−, t〉 = E−c−|−, t〉

Taking 〈±, t| on these gives

i~ċ+ = E+c+ − i~c+〈+, t|
d

dt
|+, t〉 − i~c−〈+, t|

d

dt
|−, t〉

i~ċ− = E−c− − i~c−〈−, t|
d

dt
|−, t〉 − i~c+〈−, t|

d

dt
|+, t〉

Adiabatic provided the off-diagonal parts are negligible

~|〈+, x(t)| d
dt
|−, x(t)〉| � (E+ − E−)/2 = V0

Use |−, x(t)〉 = 1√
2

(
1

−e−ikvt

)
to compute

d

dt
|−, x(t)〉 =

1√
2

(
1

+ikve−ikvt

)
from which < +, x|(d/dt)|−, x〉 = ikv/2.

Thus we need ~vk/2� V0, i.e.

v � V0
2~k

(c)

〈±|
[
− ~2

2m
∇2 + V

]
ψ±|±〉 = Eψ±

Expand out

〈±|∇2ψ±|±〉 = 〈±|∇ · [(∇ψ±)|±〉+ ψ±∇|±〉]
= 〈±|±〉∇2ψ± + 2〈±|∇|±〉 · ∇ψ± + ψ±〈±|∇2|±〉
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3

Define A± ≡ −i〈±|∇|±〉 to write

1

2m

[
−~2∇2ψ± +

2~2

i
∇ψ± ·A± − ~2〈±|∇2|±〉ψ±

]
= E±ψ±

1

2m

[(
~
i

+ ~A±
)2

− ~2|A±|2 − ~2〈±|∇2|±〉

]
ψ± = E±ψ±

⇒ H±ψ± = E±ψ±

withH± =
1

2m

(
~
i
∇+ ~A±

)2

+ V±

V±(r) = E±(r)− ~2

2m

(
|A±|2 + 〈±|∇2|±〉ψ±

)
(d) We require that the off-diagonal elements are small compared to the energy spacing
of adiabatic levels. Credit will be given for this statement, and reasoned cases setting the
effective size of the off-diagonal elements.

This requires:

–
∣∣∣ ~22m〈−, r|∇

2|+, r〉
∣∣∣� |E+ − E−|

–
∣∣∣ ~22mψ

∗
+∇ψ+ ·A−+

∣∣∣� |E+ − E−||ψ+|2 where A−+ ≡ −i〈−, r|∇|+, r〉
The second condition is essentially equivalent to the condition in (b)

|~〈−, r(t)| d
dt
|+ r(t)〉| � |E+ − E−|

with the instantaneous velocity ṙ(t) denoting the local velocity ~
m |ψ

∗
+∇ψ+|/|ψ+|2
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2 The propagator for a quantum particle moving in one dimension is defined as

K(x, t|x′, t′) ≡ θ(t− t′)〈x|U(t, t′)|x′〉

where |x〉 are the position eigenstates, U(t, t′) is the time-evolution operator from
initial time t′ to final time t, and θ(t) is the Heaviside step function.

(a) Show that, for a Hamiltonian H(t) = − ~2
2m

d2

dx2
+ V (x, t), the propagator satisfies[

i~
∂

∂t
−H(t)

]
K(x, t|x′, t′) = i~δ(t− t′)δ(x− x′)

with the boundary condition that K(x, t|x′, t′) = 0 for t < t′. [5]

For a simple harmonic oscillator, with Hamiltonian H0 = − ~2
2m

d2

dx2
+ 1

2
mω2x2,

the propagator starting from x′ = 0 at t′ = 0 is

K0(x, t|0, 0) = θ(t)

√
mω

2πi~ sinωt
exp

(
i
mω

2~
x2 cotωt

)
.

(b) Show that, in the presence of a time-dependent force, H = H0 − xF (t), the
solution to the equation in part (a) can be found, for x′ = t′ = 0, by writing

K(x, t|0, 0) = K0(x, t|0, 0) exp [iG(x, t)/~]

with G(x, t) = A(t) +B(t)x, provided that

Ȧ(t) = −B(t)2

2m
Ḃ(t) + ω cot(ωt)B(t) = F (t).

Hence, find an expression for B(t). [12][
Hint: multiply the differential equation by sinωt.

]
(c) By making reference to the Feynman path integral formulation of quantum
mechanics, comment on the relation of these results to the classical trajectory. [8]
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Solution 2. (a) Note that the Heaviside function corresponds the boundary condition.
Inserting the expression for the propagator to the Schrödinger equation gives[
i~
∂

∂t
−H(t)

]
θ(t− t′)〈x|U(t, t′)|x′〉 = i~δ(t− t′)〈x|U(t, t′)|x′〉

+i~θ(t− t′)〈x|∂U(t, t′)

∂t
|x′〉 − θ(t− t′)H(t)〈x|U(t, t′)|x′〉,

upon employing ∂tθ(t− t′) = δ(t− t′). The terms involving the Heaviside function cancels
when we use the fact that ∂tU = − i

~HU . This gives[
i~
∂

∂t
−H(t)

]
θ(t− t′)〈x|U(t, t′)|x′〉 = i~δ(t− t′)〈x|U(t, t′)|x′〉

= i~δ(t− t′)〈x|x′〉 = i~δ(t− t′)δ(x− x′)

(b) For the simple harmonic oscillator, we have[
i~
∂

∂t
−H0

]
K0(x, t|0, 0) = i~δ(t)δ(x),

which corresponds to the Schrödinger equation for t > 0.
So, for the driven harmonic oscillator:[

i~
∂

∂t
−H0 + xF (t)

]
K0e

iG/~ =

[
i~
∂K0

∂t
−H0K0

]
︸ ︷︷ ︸

0

eiG/~ −K0
∂G

∂t
eiG/~

+
~2

2m

[
2i

~
∂K0

∂x

∂G

∂x
− K0

~2

(
∂G

∂x

)2
]
eiG/~

0 = −∂G
∂t
− ωx cot(ωt)

∂G

∂x
− 1

2m

(
∂G

∂x

)2

+ F (t)x

where, on the last line, we used

∂K0

∂x
= K0

imω

~
x cot(ωt).

For G(x, t) = A(t) +B(t)x, this gives

−Ȧ− Ḃx− ωx cot(ωx)B − 1

2m
B2 + Fx = 0 .

Equating terms for each power of x:

Ȧ(t) = −B(t)2

2m

Ḃ(t) + ω cot(ωt)B(t) = F (t).
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Modifying the second line:

Ḃ sin(ωt) + ω cos(ωt)B(t) = F (t) sin(ωt)

d

dt
[B sin(ωt)] = F (t) sin(ωt)

B(t) =
1

sin(ωt)

∫ t

0
dt′F (t′) sin(ωt′).

(c) The path integral formulation expresses the propagator as the sum over all paths, x(t),
weighted by eiS[x(t)]/~ with S the action, and with x(t) satisfying the boundary conditions
x(ti) and x(tf ) at initial and final times, ti and tf ,

K ∼
∫
x(ti)→x(tf )

Dx(t)eiS[x(t)]/~

Since for the (driven) harmonic oscillator the action is at most quadratic in x(t)
and ẋ(t), by expanding x(t) = xcl(t) + δx(t) around the classical trajectory xc(t) – which
extremizes the action – this can be written exactly as

K ∼ eiS[xcl(t)]/~
∫
0→0
Dδx(t)eiS[δx(t)]/~

where the remaining path integral of δx(t) is independent of the initial and final positions.
Thus, the dependence on x(ti) and x(tf ) enters only through the prefactor eiS[xcl(t)]/~

which is the classical action, determined on the classical trajectory.
The solution here is of this form: the content of the exponent is this classical action.
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3 A system of N bosons is described by the second-quantized Hamiltonian

H =

∫
dr ψ†(r)

[
− ~2

2m
∇2+V1(r)

]
ψ(r)+

1

2

∫∫
dr dr′ψ†(r)ψ†(r′)V2(r, r

′)ψ(r′)ψ(r)

where ψ(r) and ψ†(r) are the field operators, and V2(r, r
′) is the two-body interac-

tion potential.

(a) State the set of commutation relations that the field operators satisfy. [3]

(b) Hence show that[
ψ(r),

∫
dr′
(
∂

∂r′
ψ†(r′)

)
F (r′)

]
= −∇F (r)

where F (r) commutes with ψ(r) and vanishes at large |r|. [2]

(c) Write down a second-quantized form for the total momentum operator, P . By
employing appropriate commutation relations, and assuming that ψ(r) and ψ†(r)
vanish at large |r|, show that the total momentum P is conserved when V1 = 0 and
V2(r, r

′) = V2(|r − r′|). [8][
You may use the facts that [AB,C] = A[B,C] + [A,C]B; [A,BC] = B[A,C] +
[A,B]C; and d|r|/dr = r/|r|.

]

(d) Defining the current density operator as

J(r) =
~

2mi

{
ψ†(r)∇ψ(r)− [∇ψ†(r)]ψ(r)

}
,

show that the particle density ρ(r) = ψ†(r)ψ(r) satisfies the continuity equation

∂ρ

∂t
+ ∇ · J = 0 ,

in the Heisenberg picture. [8]

(e) How would each of the above answers be affected if the particles were fermions
instead of bosons? [4]
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Solution 3. (a)
[ψ(r), ψ†(r′)] = δ(r − r′)

[ψ(r), ψ(r′)] = 0

[ψ†(r), ψ†(r′)] = 0

(b) Integrate by parts:∫
dr′
(
∇r′ψ†(r′)

)
F (r′) = −

∫
dr′ψ†(r′)∇r′F (r′)[

ψ(r),

∫
dr′
(
∇r′ψ†(r′)

)
F (r′)

]
= −

∫
dr′
[
ψ(r), ψ†(r′)

]
∇rF (r)

= −∇rF (r)

(c) Momentum operator is P = −i~
∫

drψ†(r)∇ψ(r).

dP

dt
=

i

~
[H,P ]

=
~2

2m

∫
dr dr′

[
∇rψ

†(r) ·∇rψ(r), ψ†(r′)∇r′ψ(r′)
]

︸ ︷︷ ︸
♦

+
1

2

∫
dr dr′ dr′′

[
ψ†(r)ψ†(r′)V2(|r − r′|)ψ(r′)ψ(r), ψ†(r′′)∇r′′ψ(r′′)

]
︸ ︷︷ ︸

�

First commutator gives zero upon using integration by parts where the boundary
terms vanish:

♦ = −
∫ ∫

dr dr′∇2
rψ
†(r)

[
ψ(r), ψ†(r′)∇r′ψ(r′)

]
+
[
ψ†(r), ψ†(r′)∇r′ψ(r′)

]
∇2
rψ(r)

= −
∫ ∫

dr dr′δ(r − r′)
{
∇2
rψ
†(r) ·∇r′ψ(r′) + ∇r′ψ

†(r′) ·∇2
rψ(r)

}
= −

∫
dr
{
∇2
rψ
†(r) ·∇rψ(r)−∇2

rψ
†(r) ·∇rψ(r)

}
= 0.

Similarly, the second commutator reduces to

� ∝
∫ ∫

dr dr′V ′2(|r − r′|) r − r′

|r − r′|
. . .

where both V2(|r − r′|) and its derivative V ′2(|r − r′|) are symmetric functions, while
r−r′

|r−r′| changes sign upon changing r and r′. Therefore, the integral vanishes and the total
momentum is conserved

dP

dt
= 0
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(d) Following the algebra in part (c) but for ρ(r) = ψ†(r)ψ(r):

dρ(r)

dt
=

i

~
[H, ρ]

=
i

~
~2

2m

∫
dr
[
∇rψ

†(r) ·∇rψ(r), ψ†(r′)ψ(r′)
]

+
i

~

∫
drV1(r)[ψ

†(r)ψ(r), ψ†(r′)ψ(r′)]

+
i

~
1

2

∫
dr dr′V2(r, r

′)
[
ψ†(r)ψ†(r′)ψ(r′)ψ(r), ψ†(r′′)ψ(r′′)

]
The one-body interaction term vanishes as density at two different points commute

upon integration:

i

~

∫
drV1(r)δ(r − r′)

{
ψ†(r)ψ(r′)− ψ†(r′)ψ(r)

}
= 0

Similarly, the two-body interaction term vanishes:

. . .=

∫
dr dr′V2

{
ψ†(r′′)

[
ψ†(r)ψ†(r′), ψ(r′′)

]
ψ(r′)ψ(r) + ψ†(r)ψ†(r′)

[
ψ(r′)ψ(r), ψ†(r′′)

]
ψ(r′′)

}
=

∫
dr dr′V2δ(r

′ − r′′)
{
−ψ†(r′′)ψ†(r)ψ(r′)ψ(r) + ψ†(r)ψ†(r′)ψ(r)ψ(r′′)

}
+

∫
dr dr′V2δ(r − r′′)

{
−ψ†(r′′)ψ†(r′)ψ(r′)ψ(r) + ψ†(r)ψ†(r′)ψ(r′)ψ(r′′)

}
= 0.

What is left is the continuity equation:

dρ

dt
= − i

~
~2

2m

∫
drδ(r − r′)

{
∇2
rψ
†(r) · ψ(r′)− ψ†(r′)∇2

rψ(r)
}

=
~

2mi

[
∇2
rψ
†(r) · ψ(r)− ψ†(r)∇2

rψ(r)
]

= −∇r · J .

(e) They would not change except for (a) where for fermions:

{ψ(r), ψ†(r)} = δ(r − r′)

{ψ(r), ψ(r)} = 0

{ψ†(r), ψ†(r)} = 0
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4 The equation of motion for the density operator of a quantum system is

d

dt
ρ(t) =

i

~
[ρ(t), H] + γL[ρ(t)]

where H is the Hamiltonian and

L[ρ] ≡ LρL† − 1

2

(
L†Lρ+ ρL†L

)
describes dissipative coupling to an external environment via some operator L.

(a) Show that the above equation of motion for ρ(t) leaves Tr[ρ(t)] time-independent. [4][
You may use the fact that Tr[AB] = Tr[BA].

]
(b) Show that for a two-level quantum system one can parameterise ρ(t) in terms
of three quantities ρi=x,y,z(t) as

ρ(t) =
1

2
1 +

∑
i=x,y,z

ρi(t)σi ,

where 1 is the 2× 2 identity matrix and σx,y,z are the Pauli matrices. [4][
The Pauli matrices are σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

]

Consider a two-level system, with Hamiltonian H = ~∆σz and dissipator
L = σ−, where σ± ≡ σx ± iσy.

(c) Show that the equation of motion for ρz(t) is [8]

ρ̇z = −4γρz − 2γ .[
You may use: [σl, σm] = 2iεlmnσn, σ+σ− = 2(1 + σz), σ−σ+ = 2(1 − σz), and
σ−σxσ+ = σ−σyσ+ = 0, σ−σzσ+ = 2(1− σz).

]
(d) Given that the remaining equations of motion are ρ̇x = −2∆ρy− 2γρx and ρ̇y =
2∆ρx−2γρy, determine the steady state density operator to which the system evolves
at long times, t→∞. How is it related to the eigenstates of the Hamiltonian? [4]

The equation of motion is extended to include a second dissipator, as

d

dt
ρ(t) =

i

~
[ρ,H] + γL[ρ] + γ′L′[ρ]

with L′[ρ] of the same form as L[ρ] but with L = σ− replaced by L′ = σ+ ≡ σx+iσ−.

(e) For what value of γ′/γ does the steady state density operator, at t→∞, describe
thermal equilibrium at temperature T? [5][
You may use: σ−σxσ+ = σ+σyσ− = 0, σ+σzσ− = −2(1 + σz).

]
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Solution 4. (a)

d

dt
Tr[ρ] =

i

~
Tr[ρH −Hρ] + γTr[LρL† − (1/2)(L†Lρ+ ρL†L)]

=
i

~
Tr[ρH − ρH] + γTr[L†Lρ− (1/2)(L†Lρ+ L†Lρ)]

= 0

using cyclic permutation of operators within the trace.

(b) We use the facts that: ρ is a 2 × 2 matrix; ρ is hermitian; its trace is 1. This leaves
only three real parameters that are free to be chosen

ρ =

(
1/2 + ρz ρx − iρy
ρx + iρy 1/2− ρz

)
Equivalently, the three Pauli matrix exhaust the traceless 2×2 Hermitian matrices.

(c) We use L = σ− and L† = σ+ to get the full equation of motion

ρ̇iσi = i∆[σi, σz] +
1

2
γσ−σ+ −

1

4
γ(2σ+σ−)

+γρiσ−σiσ+ −
γ

2
ρi(σ+σ−σi + σiσ+σ−)

= i∆[σi, σz]− 2γσz

+γρiσ−σiσ+ −
γ

2
ρi(σ+σ−σi + σiσ+σ−)

where we have used σ+σ− = 2(1 + σz) and σ−σ+ = 2(1− σz) from the hints.
Now, using σ−σxσ+ = σ−σyσ+ = 0 and σ−σzσ+ = 2(1 − σz) we find that the

equation of motion for the coefficient of σz depends on only ρz, i.e.

ρ̇zσz = 0− 2γσz

+γρz(2(1− σz)− 2(1 + σz)σz)

= −2γσz + γρz(2− 2σz − 2σz − 2)

Note that there are no contributions from the time derivatives of ρxσx and ρyσz. Hence,
equating the coefficient of σz we get

ρ̇z = −4γρz − 2γ .

(d) Given the other equations, we see that there are steady states with ρx = ρy = 0 and
−2γ − 4γρz = 0, i.e. ρz = −1/2. Hence [4]

ρ(t→∞) = 1/2− 1/2σz =

(
0 0
0 1

)
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This is a pure state. It corresponds to the energy eigenscate of the Hamiltonian
with energy −~∆. Thus for ∆ > 0 this is the groundstate. For ∆ < 0 it is the excited
state.

(e) Adapting the previous derivation, now for γ′ and L′ leads to an additional term in
ρ̇zσz:

+γ′σz + γ′ρz(σ+σzσ− − (1/2) {σ−σ+σz}+
= +2γ′σz + γ′ρz(−2(1 + σz)− 2σz(1− σz))

= 2γ′σz − 4γ′ρzσz

Hence the new equation of motion is

ρ̇z = −4γρz − 2γ − 4γ′ρz + 2γ′ .

The new steady state is

ρz =
1

2

(
γ′ − γ
γ′ + γ

)
which leads to

ρ(t→∞) = 1/2 + ρzσz =
1

γ + γ′

(
γ′ 0
0 γ

)
At thermal equilibrium

ρ = e−βH/Z =
1

Z

(
e−β~∆ 0

0 e+β~∆

)
,

so e+2β~∆ = γ′/γ. Thus
γ′/γ = e−2~∆/kBT .
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