
NATURAL SCIENCES TRIPOS Part II

Wednesday 24 April 2024, 10.30 to 12.30

THEORETICAL PHYSICS 2

Answer all four questions.

The approximate number of marks allotted to each part of a question is
indicated in the right margin where appropriate.

The paper contains 4 sides, excluding this one, and is accompanied by a
booklet giving values of constants and containing mathematical for-
mulae which you may quote without proof. (The booklet is available
for separate download.)
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1 (a) Consider a Hermitian eigensystem H(g)|un(g)⟩ = En(g)|un(g)⟩, which depends
parametrically on gµ, µ = 1, ..., N . Starting from the overlap of two infinitessimally
close states in parameter space,

⟨un(g)|un(g + δg)⟩ = |⟨un(g)|un(g + δg)⟩| · eiAn(g)·δg,

show that, upon leading order in δg, Aa
n =

⟨un(g)|∇a
gun(g)⟩−⟨∇a

gun(g)|un(g)⟩
2i⟨un(g)|un(g⟩ . Assuming

that the states are normalised, show this gives the Berry potential,

Aa
n = −i⟨un(g)|∇a

gun(g)⟩. (1)

[6]

(b) We now take a specific class of Hamiltonians of the above form,

H(q) = v(qxσx + qyσy + qzσz),

where q is assumed to be an effective momentum, σi are the Pauli matrices and
v is a velocity. What happens at q = 0? Show that H(q) has two eigenenergies
E± = ±v|q|. [3]

(c) Show that the eigensstate |+⟩, with H|+⟩ = E+|+⟩, is given by

|+⟩ =
(

cos(θ/2)
eiφ sin(θ/2)

)
,

where we rewrote (qx, qy, qz) = (|q| sin θ cosφ, |q| sin θ sinφ, |q| cos θ). Give also an
expression for |−⟩, where H|−⟩ = E−|−⟩. [6]

(d) Show that the Berry potential Aa
+ = −i⟨+|∇a+⟩ = sin2(θ/2)φ̂

|q| sin θ
and that the Berry

curvature, ∇×A+, equates to
q̂

2|q|3 . [5]

(e) What is the result when we integrate the Berry curvature over a sphere of
constant q? Give an interpretation. How does the result change when we would
instead consider the Hamiltonian H̃(q) = v(qxσx + qyσy − qzσz)? Motivate your
answer [a calculation is not directly needed]. How do the results change when we
make a gauge transformation, |+⟩ → eiβ(q)|+⟩? [5]
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2 Consider a very thin and long wire of length L and width W , smoothly connected
to a reservoir of electrons on both ends. The reservoirs at the left and right end are
kept at different electrostatic potentials V = VR − VL.

(a) Write down the energy eigenvalues and eigenstates of the electron wave-
functions in the wire.[
hint: You can assume a rectangular shaped wire and combine the quantum particle
in an infinite well problem for the transverse direction y with a free-particle in the
longitudinal direction x.

]
[4]

(b) For each eigenstate calculate the electrical current density jn,k(x, y) and
current In,k. Here n, k are the eigenstate labels. The total current through the wire
is

I = 2
L

2π

∞∑
n=1

∫ ∞

−∞
dkIn,k[f(ϵn,k + eVL)θ(k) + f(ϵn,k + eVR)θ(−k)], (2)

where f(x) is the Fermi distribution function and θ(x) is the Heaviside step function.
On physical grounds, justify the presence of these two functions and the first factor
of 2 on the RHS of Eq. (2) . [6]

(c) Now take the zero temperature limit, and show that the conductance of
the wire is given by G = 2Ne2/h, where N is the number of occupied energy levels
n (also referred to as open channels). Why is conductivity not infinite? Where is
the associated energy loss happening?[
hint: For the first part, it is convenient to perform integral over energy instead of
k. For this try to express In,k as a derivative of energy

]
[6]

(d) Now consider an impurity in the middle of the wire through which an
electron in state n is reflected by probability r and transmitted by a probability
t. Moreover, assume that the reflection and transmission is diagonal in n, i.e. the
quantum number n remains unchanged before and after scattering. Obtain the
modified expression for total current and show that the conductance is modified to
G = 2N |t|2e2/h . [6]

(e) Now assume that the transmission and reflection probabilities are tn,n′ and
rn,n′ for scattering between two channels with quantum number n and n′, write down
the generalized expression for conductance. You will get full marks even if you just
guess the correct answer from what you obtained in (d) without any derivation. [3]
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3 Consider spinless particles in a magnetic field described by the Hamiltonian

H =
1

2m
(p− eA(r))2,

where we set the speed of light c = 1, p represents momentum and A(x) is the
gauge potential.
(a) Give an expression for the velocity v.[
hint: Recall [AB,C] = A[B,C] + [A,C]B and [A,BC] = B[A,C] + [A,B]C.

]
[5]

(b) We now take a specific gauge A(r) = 1
2
(−By,Bx, 0), where B is the strength of

the magnetic field. Setting e = ℏ = B = m = 1 we then get following Hamiltonian

Hsymm =
1

2
[(−i ∂

∂x
− y

2
)2 + (−i ∂

∂x
+
x

2
)2].

Show that Hsymm can be written in quantised form as

Hsymm = â†â+
1

2
,

where â = 1√
2
[(x

2
+ ∂

∂x
) − i(y

2
+ ∂

∂y
)] and â† = 1√

2
[(x

2
− ∂

∂x
) + i(y

2
− ∂

∂y
)]. Also verify

that [â, â†] = 1. What is the interpretation of acting with â† on the vacuum state? [6]

We now consider turning the magnetic field off and switching on interactions. In
second quantised form the system is then described by a Hamiltonian that reads

Hint =

∫
dr ψ̂†(r)[

−ℏ2

2m
∇2]ψ̂(r) +

1

2

∫
dr

∫
dr′ψ̂†(r)ψ̂†(r′)V (r, r′)ψ̂(r)ψ̂(r′),

where ψ̂†(r) are the field operators and V (r, r′) is a two-body interaction term.

(c) Write down the commutation/anti-commutation relations for the field operators
ψ̂†(r) and ψ̂(r) when the system is generally composed of Fermions or Bosons. [3]

(d) Define the total angular momentum J . Assuming that we have Fermions and
a two-body interaction term of the form V (r, r′) = V (|r − r′|). Show that total
angular momentum J is conserved. Here you may use that ψ̂(r) and ψ̂†(r) vanish
for large r. You may also use that V derivatives thereof are symmetric in r.[
hint 1: Recall [AB,CD] = A{B,C}D−{A,C}BD+CA{B,D}−C{A,D}B and
d|r|
dr

= r
|r| .

][
hint 2: Also note that the boundary conditions allow for integration by parts.

]
[8]

(e) What does the result imply for the “Landau levels” obtained acting with â† on
the vacuum when such interaction terms are present? [3]
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4 Consider the Hong-Ou-Mandel setup. Precisely, consider a 50:50 beam splitter (i.e.
each incident photon has an equal probability of getting reflected or transmitted
from the beam splitter), with two input modes and two output modes. Two identical
photons are simultaneously incident in the two input modes (one in each mode).

(a) Draw the figure for all possible experimental outcomes. Taking into ac-
count the unitarity of the scattering matrix and assuming real-valued reflection and
transmission amplitudes, assign appropriate overall signs for all possible outcomes. [4]

(b) Write down the two-photon states in the input and in the output modes.[
hint: The most convenient is to write Fock states in the mode basis

]
. For the input

and output states, write down the density matrices. Take the partial trace over one
of the mode and obtain the reduced density matrices. Then explicitly calculate the
entanglement entropies to show that the experiment generates entanglement in the
output modes. [5]

(c) Now consider a three-qubit state known as the GHZ state

ψGHZ =
1√
2
(|000⟩+ |111⟩).

Write down the one and two particle reduced density matrices by taking partial
traces (You can choose to trace out particle 2 and 3 to calculate one particle reduced
density matrix and trace out particle 1 to calculate two particle reduced density
matrix). Calculate the entanglement entropies. Is the mutual entanglement equal? [5]

(d) By using the two particle reduced density matrix, show that indeed the
GHZ state is highly entangled.

[
hint: You can show that by considering a small

perturbation to the GHZ state by mixing it with a three-qubit state of your choice
and showing that entanglement entropy decreases as mixing is increased.

]
[6]

(e) Now consider another highly entangled three qubit state, called the W
state

ψW =
1√
3
(|001⟩+ |110⟩+ |100⟩).

Trace out one of the particle and calculate the entanglement entropy. Compare it
with the result of the GHZ state. Which state is more entangled? [5]
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