... nuclei2.1
At the atomic energy scales which are of interest in this work, the nuclei are extremely well-described as massive point charges and their internal structure is safely neglected.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... particle2.2
We are neglecting spin in this discussion.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... eigenvalue2.3
For the case of eigenvalue degeneracy, the state-vector collapses to a vector lying in the subspace spanned by all of the eigenvectors corresponding to the measured eigenvalue.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... measurement2.4
Again, for the degenerate case, the probabilities must be summed for all eigenvectors corresponding to the measured eigenvalue.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... operators2.5
For a linear operator ${\hat O}$, ${\hat O}
(\alpha \vert A \rangle + \beta \vert B \rangle ) = \alpha {\hat O} \vert A \rangle +
\beta {\hat O} \vert B \rangle$.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... equation2.6
Atomic units are used throughout (unless otherwise stated): $\hbar = m_{\mathrm e} = e = 4 \pi \varepsilon_0 = 1$.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... problem2.7
The most notable exception to this rule is the motion of hydrogen, which is often treated using the path-integral formulation of quantum mechanics[9,10].
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... express2.8
Berry [13] has recently proposed a non-relativistic explanation involving a geometric phase.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... operators2.9
Neither the creation nor annihilation operators are Hermitian, and so they do not correspond to physical observables.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... states3.1
Our restriction to non-spin-polarised systems requires that $N$ be even.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... potential3.2
The chemical hardness has been proposed as a quantity which gives a more reliable indication of pseudopotential transferability since it includes self-consistent effects [63,64].
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... density-matrix4.1
The computational cost of diagonalising a sparse density-matrix scales as the square of the system-size.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... reciprocal-space7.1
The conventions used here for discrete Fourier transforms are

\begin{displaymath}{\tilde n}({\bf G}) = \sum_{\bf r} n({\bf r}) \exp(-{\mathrm ...
...} {\tilde n}({\bf G}) \exp({\mathrm i} {\bf G} \cdot {\bf r}). \end{displaymath}

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.