Core level spectroscopy

Chris J Pickard Department of Physics & Astronomy University College London

Core level spectroscopy

Absorption and Fermi's Golden Rule

Dielectric function

$\varepsilon(\omega, \mathbf{q}) = \varepsilon_1(\omega, \mathbf{q}) + i\varepsilon_2(\omega, \mathbf{q})$

Loss function: Im $\left\{ \frac{-1}{\varepsilon(\omega, \mathbf{q})} \right\}$

Kramers-Kronig:

$$\varepsilon_1 \leftrightarrow \varepsilon_2$$

X-rays vs electrons

Identical theory to the first approximation

- Carry much more momentum
- Can be focussed into probes
- Can interact with ejected electrons

Dipole approximation

$$\langle f|e^{i\mathbf{q}\cdot\mathbf{r}}|i\rangle = \langle f|i\rangle + i\langle f|\mathbf{q}\cdot\mathbf{r}|i\rangle - \frac{1}{2}\langle f|(\mathbf{q}\cdot\mathbf{r})^2|i\rangle - \frac{i}{6}\langle f|(\mathbf{q}\cdot\mathbf{r})^3|i\rangle + \frac{1}{24}\langle f|(\mathbf{q}\cdot\mathbf{r})^4|i\rangle + \cdots$$

Dipole term

$$\langle f | x | 1 s \rangle \approx \langle f | P_x \rangle$$

Core level spectra can be thought of as angular momentum projected density of states

General strategy

Structural optimisation

Calculate self consistent ground state density

Calculate KS wavefunctions and eigenvalues

Evalulate matrix elements between core and conduction states

Form a weighted density of states

Periodic boundary conditions

Use the translational symmetry of the crystal

Bloch's theorem $\Psi_{n\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r})$

Al Bandstructure

Density of states

Gaussian broadening or linear tetrahedron method (extrapolative)

Plane waves Basis functions

$$e^{i(\mathbf{k}+\mathbf{G})\cdot\mathbf{r}}$$

A Fourier series

Unlike atom centred atomic orbitals or gaussian functions, there is no "origin" to a plane wave

Easy for theory and computation

The quality of the basis is controlled by a single number $\frac{1}{2}|{f k}+{f G}|^2\leq E_{
m cut}$

The core electrons are "frozen" and the valence orbitals smoothed within the "core radius"

A pseudopotential theory

We must fix up the wavefunction near the nucleus

Projector augmented waves
$$|\Phi\rangle = \mathcal{T}|\tilde{\Phi}\rangle$$
 where $\mathcal{T} = 1 + \sum_{n} (|\phi_n\rangle - |\tilde{\phi}_n\rangle)\langle\beta_n|$

Matrix elements

$$\langle f|e^{i\mathbf{q}\cdot\mathbf{r}}|i\rangle = \langle f|i\rangle + i\langle f|\mathbf{q}\cdot\mathbf{r}|i\rangle - \frac{1}{2}\langle f|(\mathbf{q}\cdot\mathbf{r})^2|i\rangle - \frac{i}{6}\langle f|(\mathbf{q}\cdot\mathbf{r})^3|i\rangle + \frac{1}{24}\langle f|(\mathbf{q}\cdot\mathbf{r})^4|i\rangle + \cdots$$

Dipole

	CASTEP		All electron
	Uncorrected	Corrected	
Carbon			
$1s \rightarrow 2p$	0.03997	0.04313	0.04316
Silicon			
$1s \rightarrow 3p$	0.00065	0.00472	0.00471
$2s \rightarrow 3p$	0.06207	0.03164	0.03168
$2p \rightarrow 3s$	0.09308	0.05213	0.05196
$2p \rightarrow 3d$			0.05262

Energy dependence

Core hole effects

1s core state

Core hole effects

Theoretical approaches

Weak Perturbative approach - Clogston-Wolff

> Strong Atomic multiplet theory

In many insulators it is somewhere inbetween and is a challenge ...

Single particle approach

Beyond the "sudden" approximation

Exploit separation of timescales:

I) Core electron ejected
 Lattice remains fixed
 Final states relax

Initial core state from an atomic calculation

Final states from self consistent calculation with a single excited atom

Supercell approximation

Supercell approximation

Excited atom

Z+I approximation (eg replace C with N)

Constrained calculation (only possible with AE code)

Excited pseudopotentials (need to be able to generate PSPs)

On-the-fly pseudopotentials

A feature unique to CASTEP

Remember and use the generation data for PAW

%BLOCK SPECIES_POT
C 2|1.4|1.4|1.3|6|10|12|20:21(qc=6)[]
%ENDBLOCK SPECIES_POT

Great power - and responsibility

Core hole effects

Put the core hole in the pseudopotential

Use the supercell approximation

The strength of the core hole effect varies considerably from material to material

Screening

Core hole strength

Boron Nitride

"Cubic boron nitride: experimental and theoretical energy-loss near edge structure", Jayawardane, Pickard, Brown and Payne, *Phys. Rev. B*, **64**, 115107 (2001)

Theory overview

	Theory	Methods	Features
I	Atomic calculation	atomic multiplet [96], multiconfigurational Dirac Fock (MCDF)	basic edge shapes, L2,3 ra- tio, multiplet fine structure, crystal field splitting can be included
II	Single scattering	EXAFS and EXELFS methods [92]	reflections from neighbouring atoms, describes extended structure above $\sim 50 \text{eV}$
III	Multiple scattering	XANES methods [26]	multiple reflections, <i>not</i> self-consistent, poor de- scription of threshold
IV	Self-consistent band theory	muffin tin — augmented plane wave (APW) [9], augmented spherical wave (ASW) [37,100], Korringa-Kohn- Rostoker (KKR) [58]	self-consistent potentials, all electron, directly in- terpretable local angular momentum resolved DOS
		pseudopotential — pseudo-atomic orbital [102] and planewave [15]	pseudo-atomic orbitals give direct interpretation of DOS, but the inadequate basis leads to failure at high energies. Planewaves are discussed in the current work
V	Inclusion of core effects		

Why plane waves?

Ease of use

Large complex low symmetry problems

Structural relaxation

Complications

Excited state lifetimes determine the energy dependent broadening Where should the excited electron be put? Linking with multiplet theory Beyond the dipole approximation Magnetism How well does KS describe the excited states?

The challenge is to tackle these without losing the efficiency that allows realistic systems to be investigated

Bibliography

Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients	Payne et al	Rev. Mod. Phys. 64 , 1045-1097 (1992)
First principles methods using CASTEP	Clark et al	Zeitschrift fur Kristallographie 220 , 567-570 (2005)
Ab initio EELS with a plane wave basis set	Pickard et al	Electron microscopy and analysis 1997 147, 211-214 (1995)
Ab initio EELS: beyond the fingerprint	Pickard et al	Electron microscopy and analysis 1995 153, 179-182 (1997)
Cubic boron nitride: experimental and theoretical energy- loss near edge structure	Jayawardane et al	PRB 64 , 115107 (2001)
Theory of core hole effects in 1s core level spectroscopy of the first-row elements	Gao et al	PRB 77 , 115122 (2008)

Direct link to thesis:

Ab initio electron energy loss spectroscopy

http://www.tcm.phy.cam.ac.uk/~cjp20/old/thesis.tar.gz