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NATURAL SCIENCES TRIPOS Part II

Wednesday 16 January 2019 10:30am to 12:30pm

THEORETICAL PHYSICS I

Answer all four questions.

The approximate number of marks allotted to each part of a question is
indicated in the right margin where appropriate.

The paper contains four sides and is accompanied by a booklet giving
values of constants and containing mathematical formulae which
you may quote without proof.

1 The action for a system consisting of a polarizable medium moving
relativistically in an electromagnetic field is given by

S =
∫
d4x

[
−1

4
F µνFµν +

1

2
MµνFµν −

1

2κ
uµuνM

λµMν
λ +

1

4χ
(gµρ + uµuρ)(gνσ + uνuσ)MµνMσρ

]
,

where F µν is the usual electromagnetic field strength tensor, gµν is the usual
Minkowski metric, Mµν is an antisymmetric tensor describing the polarization of
the medium, uµ is the 4-velocity of the medium, and κ and χ are physical
constants.

(a) Show that the equation of motion for the electromagnetic gauge potential, Aµ,
is given by

∂νF
µν = ∂νM

µν .

[5]
——————
[partly book work and partly unseen] The usual variation of the

Maxwell Lagrangian −1
4
F µνFµν yields a term ∂νF

µν in the equation of motion. For
the other term involving Aµ, it is easiest to integrate by parts to move the
derivative onto the polarization tensor. Using antisymmetry of Mµν , one reduces
the term to Mµν∂νAµ, whence the equation of motion is just ∂νF

µν = ∂νM
µν .

——————

(b) Using the method of Lagrange multipliers to account for the antisymmetric
nature of Mµν , show that the equation of motion for the antisymmetric
polarization tensor, Mµν is given by

0 = Fµν −
1

κ
(uνuρM

ρ
µ − uµuρMρ

ν)−
1

χ
[Mρσ(gρµ + uρuµ)(gσν + uσuν)] .
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[10]
——————
[unseen calculation] We use the method of Lagrange multipliers to

account for the fact that Mµν is antisymmetric. Thus, we add to the Lagrangian a
term λµν(M

µν +Mνµ), where λµν are Lagrange multipliers. This term adds a piece
λµν + λνµ to the equation of motion for Mµν , so we can easily remove the lagrange
multipliers from the equations of motion by antisymmetrizing the equations of
motion with respect to µ and ν. In this way, a straightforward but tedious
derivation yields

0 = Fµν −
1

κ
(uνuρM

ρ
µ − {µ↔ ν})− 1

χ
[Mρσ(gρµ + uρuµ)(gσν + uσuν)]

Note: An answer which does not use Lagrange multipliers, or does not
otherwise explicitly take into account the fact that Mµν is antisymmetric, will be
penalized.

——————

(c) Defining Pi ≡M i0 and Mi = 1
2
εijkM

jk, respectively, express the interaction
term 1

2
MµνFµν in terms of the usual electric and magnetic field vectors and thus

give an interpretation of Pi and Mi. [4]
——————
[unseen calculation] Using the usual relations, we get

1
2
MµνFµν = P · E +M ·B, whence we see that P represents the electric

polarization (per unit volume) and M the magnetic polarization (per unit volume).
Differing signs of either term correspond simply to different conventions so will not
be penalised.

——————

(d) Show that, in the rest frame, Pi and Mi are proportional to the electric and
magnetic fields, respectively, and find the constants of proportion. [4]

——————
[partly book work and partly unseen] Using uµ = (1, 0, 0, 0) in the rest

frame, we get P = κE,M = χB.
——————

(e) What properties of the medium do the constants κ and χ describe? [2]
——————
[bookwork] By inspection, κ and χ represent (roughly) the electric and

magnetic susceptibilities of the medium, respectively.
——————
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2 Describe what is meant by a holonomic constraint in Lagrangian classical
mechanics and give an example of a system with a holonomic constraint. [4]

——————
[bookwork] A holonomic constraint is one that can be expressed in terms of

generalized co-ordinates and time alone. An example is the system below, if
oscillations are small enough.

——————

A uniform cylinder of mass m and radius r rolls without slipping inside a larger
cylinder of radius R. The angles θ and φ are defined as in the Figure, where the
black dots coincide when the rolling cylinder is at its lowest point. By resolving
the motion into the motion of the centre of mass and motion about the centre of
mass, show that the kinetic energy may be written as

m

2
(R− r)2θ̇2 +

m

4
r2(φ̇− θ̇)2

[5]
——————
[unseen] The motion of the centre of mass is purely rotational, in a circle of

radius R− r with angular velocity θ̇. The rotation of the cylinder about its centre
of mass in the rest frame is with angular velocity φ̇− θ̇. The moment of inertia is
mr2/2. The total kinetic energy is therefore

m

2
(R− r)2θ̇2 +

m

4
r2(φ̇− θ̇)2

.
——————

Show that the no slip condition yields a holonomic constraint. [3]
——————
[unseen] The no slip condition forces rφ = Rθ which is a holonomic

constraint.
——————

By writing down the Lagrangian, show that the system can exhibit small
oscillations and find the corresponding oscillation frequency. [6]

——————
[unseen] To the kinetic energy, we must add the potential energy

−mg(R− r) cos θ. We also have the no slip condition, which forces rφ = Rθ. We
may either include this as a lagrange multiplier or solve directly. With the latter
approach, we get

L =
3

4
m(R− r)2θ̇2 +mg(R− r) cos θ

from which we read off the angular frequency ω2 = 2g
3(R−r) .

——————
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Discuss whether or not there is a frictional force present and whether or not the
energy of the system is conserved. [3]

——————
[bookwork] There must be a frictional force present, because the cylinder

rolls without slipping. However, this force does no work because the motion is
always normal to it. Hence the energy is conserved, and indeed the Lagrangian,
being explicitly independent of time, has conserved energy by Noether’s theorem.

——————

Discuss whether or not angular momentum is conserved. [2]
——————
[bookwork] No, and indeed the system is not invariant under rotations (e.g.

because of the presence of gravity).
——————
Discuss whether or not the system is holonomic for all possible motions. [2]
——————
[unseen] For large motions, the small cylinder can lose contact with the

larger one. This cannot be expressed in terms of holonomic constraints.
——————
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3 A Bose-Einstein condensate can described by the Lagrangian density

L =
ih̄

2

(
ψ∗∂ψ

∂t
− ψ∂ψ

∗

∂t

)
− h̄2

2M
∇ψ∗ ·∇ψ + µ|ψ|2−1

2
g|ψ|4

for the complex field ψ(r, t), with g, µ > 0.

(a) Show that this theory has symmetry under global changes of the phase of
ψ(r, t), but does not have symmetry under local phase changes. [3]

——————
[bookwork] Since all terms of products of equal numbers of ψ∗ and ψ,

the action is clearly invariant under the global phase change ψ → eiεψ.
However, if ε depends on space or time, then the space- or time-derivatives
would generate extra terms not present initially.

——————

(b) Show that the Hamiltonian density is

H =
h̄2

2M
∇ψ∗ ·∇ψ − µ|ψ|2+1

2
g|ψ|4 .

Hence show that the groundstate, ψ0, breaks the global symmetry. [5]
——————
[bookwork] Standard bookwork, starting from

H =
∂L
∂ψ̇∗

ψ̇∗ +
∂L
∂ψ̇

ψ̇ − L

leads to the result.

To minimize H, the groundstate must be spatially uniform.

The minimum of −µ|ψ|2+1
2
g|ψ|4 is at

|ψ|2= µ

g
⇒ ψ =

√
µ

g
eiθ

Hence it breaks the symmetry: any choice of θ gives a valid groundstate.
——————

(c) By writing ψ(r, t) = ψ0 + χ(r, t), with ψ0 real, show that, keeping all
terms up to second order in χ, the Lagrangian density may be written [7]

L ' ih̄

2

[
χ∗∂χ

∂t
− χ∂χ

∗

∂t

]
− h̄2

2M
∇χ∗ ·∇χ− 1

2
µ(χ+ χ∗)2

——————
[familiar ideas, but different temporal dependence] Insert

ψ(r, t) = ψ0 + χ(r, t) and expand up to second order in χ.
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Use must be made of: |ψ|2= µ/g to simplify the terms.

There is an overall constant and a term 1
2
ih̄(ψ∗

0χ̇− ψ0χ̇
∗) which must be

dropped to get the stated result. Candidates are expected to point out that
terms that are total derivatives can be ignored.

——————

(d) Derive the Euler-Lagrange equations for χ and χ∗. By writing
χ = χ1 + iχ2, or otherwise, show that there exist excitations with angular
frequency ω and wavevector k connected via [8]

ω =

√√√√ |k|2
2M

(
h̄2|k|2
2M

+ 2µ

)
.

——————
[unseen] The E-L equations can be found by using χ and χ∗ as

independent variables:

ih̄χ̇ = − h̄2

2M
∇2χ+ µ(χ+ χ∗)

−ih̄χ̇∗ = − h̄2

2M
∇2χ∗ + µ(χ+ χ∗)

Take the sum and difference to get the real and imaginary parts χ1 and χ2

−h̄χ̇2 = − h̄2

2M
∇2χ1 + 2µχ1

h̄χ̇1 = − h̄2

2M
∇2χ2

For a plane wave e−iωt+ik·r, we have

+ih̄ωχ2 =
h̄2|k|2

2M
χ1 + 2µχ1

−ih̄ωχ1 =
h̄2|k|2

2M
χ2

Hence,

−ih̄ωχ1 =
h̄2|k|2

2M

[
h̄2|k|2

2M
+ 2µ

]
1

ih̄ω
χ1

(h̄ω)2 =
h̄2|k|2

2M

[
h̄2|k|2

2M
+ 2µ

]

giving the requested result.
——————
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(e) Comment on the form of this mode dispersion in connection with
Goldstone’s theorem. [2]

——————
[standard concept] There is a broken global continuous symmetry, so

one expects there to be a gapless mode according to Goldstone’s theorem. The
mode derived indeed has a vanishing gap at k → 0.
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4 The Landau free energy describing a certain magnetic material is

f(m) = a(T − Tc)m2 +
1

2
bm4 +

1

3
cm6

where the order parameter m is real, and c > 0.

(a) Explain the physical meaning of the Landau free energy and the order
parameter. What symmetries does the above theory exhibit? [5]

——————
[bookwork] The order parameter characterises the phase transition: it

vanishes in the disordered phase and is non-zero in the ordered phase; it can
distinguish between different broken symmetry phases.

The Landau free energy represents a coarse-grained description of the
system, valid close to a critical point where the order parameter is small.

——————

(b) For b > 0, show that there is a continuous phase transition to an ordered
phase for T < Tc. Determine the value of the critical exponent β, defined by
m ∝ (Tc − T )β for T close to Tc in the ordered phase. [8]

——————
[bookwork] Close to the transition m is small so we can neglect cm6.

This reduces to the model (studied in handout and lectures)
f(m) ' a(T − Tc)m2 + 1

2
bm4.

The free energy has stationary points at m = 0 and m2 = a(Tc − T )/b.

For T > Tc the only (real) solution is m = 0, the disordered phase.

For T < Tc the free energy minima are at m = ±
√
a(Tc − T )/b. (That

these have lower free energy than m = 0 should be stated explicitly.)
——————

(c) Consider now b < 0. By sketching the free energy for T = Tc, or
otherwise, show that the phase transition is now discontinuous. [4]

——————
[extension of known ideas to new setting] At T ≤ Tc, the m = 0

solution becomes unstable. However, at T = Tc, there is already another
(global) minimum at nonzero m. (This could be shown on a sketch.) Hence,
the global energy minimum must have moved away from m = 0 at some
higher T > Tc. At that point there was a jump in m from zero to a non-zero
value: i.e. a discontinuous phase transition.

——————

(d) Determine the critical temperature T ∗
c at which this discontinuous

transition occurs. [Hint: it can be helpful to work in terms of x = m2.] [6]
——————
[unseen] At the transition point, T ∗

c , the free energy of m = 0 equals that
at the new, nonzero, value m∗ to which the system jumps. The free energy at
m = 0 is f(0) = 0, so the new minimum also has f(m∗) = 0.
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To analyse the transition, follow the hint and work in terms of x = m2

f(x) = αx+
1

2
bx2 +

1

3
cx3 = x(α +

1

2
bx+

1

3
cx2)

The minimum corresponding to m = 0 corresponds to the root at x = 0. The
second minimum to which it jumps at the transition can be found by noting
that this corresponds to the situation where the two roots of (α + 1

2
bx+ 1

3
x2)

coincide (i.e. the minimum of f(x) just touches f = 0). From the formula
for the roots of a quadratic equation, that requires:

(b/2)2 − 4α(c/3) = 0 ⇒ α =
3

16

b2

c

Hence

T ∗
c = Tc +

3

16

b2

ac

[Credit will be given for other approaches that would lead to this result, e.g.
by explicitly finding the minima of f(m) via differentiation.]

(e) Hence, or otherwise, sketch the phase diagram as a function of T − Tc
and of b, with both of these parameters ranging from negative to positive
values. Be clear to distinguish continuous and discontinuous transitions. [2]

——————
[unseen]

b

T − Tc

DISORDERED PHASE, m = 0

ORDERED PHASE, m 6= 0

discontinuous

continuous

The answer could also be obtained from physical reasoning that T ∗
c , at b < 0,

should increase as |b| becomes larger (since nonzero |b| makes the minimum to
which the system will jump have lower free energy).

END OF PAPER
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