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THEORETICAL PHYSICS I

Attempt all 4 questions. The approximate number of marks allotted
to each part of a question is indicated in the right margin. The
paper contains 13 sides, including this one and is accompanied by a
booklet giving values of constants and containing mathematical
formulæ which you may quote without proof.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator.

A



2

1 Two planets, of masses m1 and m2 and negligible size, interact via gravity.

(a) By writing down the lagrangian in the centre-of-mass frame and solving
the Euler-Lagrange equations of motion, show that the planets may undergo
circular motion at any radius of separation r with constant angular frequency ω
given by ω2 = G(m1 +m2)/r

3. [5]

[Seen] In the centre of mass frame, we have that

L =
1

2
MṘ2 +

1

2
µṙ2 +GMµ/|r|,

where µ = m1m2
m1+m2

and M = m1 +m2. In polar co-ordinates (r, θ), where r = |r|, the
Euler-Lagrange equation of motion for r is

µr̈ = µrθ̇2 −GMµ/r2,

so for circular motion with ṙ = 0, θ̇ = ω this reduces to

0 = rω2 −GMµ/r2

giving the desired result.

A satellite, of mass m3 and negligible size, is added to the system. You may
assume that it has a negligible effect on the motion of the planets and that it
moves in the plane of their circular motion.

(b) Show that by choosing suitable coordinates x and y in the frame of
reference in which the planets are stationary, the lagrangian for the satellite may
be written as

L =
1

2
m3

[
(ẋ− ωy)2 + (ẏ + ωx)2

]
+Gm3

[
m1

r1
+

m2

r2

]
,

where you should determine r1 and r2 in terms of x, y,m1,m2, and r. [4]

[Unseen] We choose our co-ordinates such that the origin is at the centre-of-mass
of the two planet system with both planets at y = 0. So planet one is at
(x, y) = (−rµ/m1, 0) and planet two is at (x, y) = (+rµ/m2, 0). So if the satellite is at a
general position (x, y), then its distance from planet one is (by Pythagoras)
r21 = (x+ rµ/m1)

2 + y2, while its distance from planet two is r22 = (x− rµ/m2)
2 + y2,

where µ = m1m2
m1+m2

and these are simply the distances from the satellite to each of the
planets. The potential energy is then given simply by the sum of the two contributions
from each of the planets.

For the kinetic energy, we must remember that the reference frame is stationary

with respect to the planets, so is rotating with angular velocity ω with respect to the

(intertial) centre-of-mass-of-the-two-planets frame. In that frame, the velocity therefore
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has x component ẋ− ωy and y-component ẋ+ ωx and the given lagrangian follows.

(c) Find the equation of motion for x and show that the equation of motion
for y is given by

m3(ÿ + 2ωẋ− ω2y) = −Gm3

[
m1y

r31
+

m2y

r32

]
.

[4]

[Partly seen] Using the standard formula d
dt

∂L
∂q̇ = ∂L

∂q , the Euler-Lagrange
equations are (after gathering terms)

m3ÿ = −2m3ωẋ+m3ω
2y −Gm3

[
m1y

r31
+

m2y

r32

]
and

m3ẍ = 2m3ωẏ +m3ω
2x−Gm3

[
m1(x+ rµ/m1)

r31
+

m2(x− rµ/m2)

r32

]
.

(d) Find the locations of the two points away from the line joining the two
planets at which the satellite may be stationary with respect to the planets. [4]

[Unseen] For stationary solutions, we set all time derivatives equal to zero. Since
y ̸= 0 by assumption, we can divide by y in the y equation giving

ω2 = G

[
m1

r31
+

m2

r32

]
.

But plugging this into the term m3ω
2x in the x equation (with all time derivatives set to

zero), we see that all terms in x cancel, leaving just

0 = rµ/r31 − rµ/r32,

so r1 = r2. Plugging this into

ω2 = G
m1 +m2

r3
= G

[
m1

r31
+

m2

r32

]
,

we see that r1 = r2 = r. So there are two solutions, in which the satellite forms the apex
of an equilateral triangle with the two planets making the opposite side, both above and
below the line joining the two planets.

(Students may also guess that the solution is r1 = r2 = r and confirm this by

plugging into the two equations.)
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(e) By means of a graphical method, find out how many points there are on
the line joining the two planets at which the satellite may be stationary with
respect to the planets. [6]

[Unseen] Since y = 0, the E-L equation for y is trivially satisfied. For the x E-L
equation, we have

ω2x = G

[
m1(x+ rµ/m1)

|x+ rµ/m1|3
+

m2(x− rµ/m2)

|x− rµ/m2|3
]
.

Plotting graphs of the left and right hand sides we obtain the plot shown (we have

assumed m1 > m2 here, wlog). The plot is obtained as follows. For the right hand side,

m
2

r µ/m
1r µ/−

ω 2 x

Figure 17: The three solutions sitting on y = 0.
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Now let’s look for solutions with y 6= 0. From (2.96) we have

Gm2

r3
23

= !2 � Gm1

r3
13

(2.99)

which we can substitute into (2.95) and, after a little algebra, we find the condition for

solutions to be

!2 =
G(m1 + m2)

r3
13

=
G(m1 + m2)

r3
23

(2.100)

which means that we must have r13 = r23 = r. There are two such points.

In general there are five stationary points drawn
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Figure 18: The five Lagrange points.

X marks the spots.

in the figure. These are called Lagrange points. It

turns out that L1, L2 and L3 are unstable, while

L4 and L5 are stable as long as m2 is su�ciently

less than m1.

For the earth-sun system, NASA and ESA make

use of the Lagrange points L2 and L3 to place

satellites. There are solar observatories at L3;

satellites such as WMAP and PLANCK which

measure the cosmic microwave background radi-

ation (the afterglow of the big bang) gather their

data from L2. Apparently, there is a large collec-

tion of cosmic dust which has accumulated at L4 and L5. Other planetary systems (e.g.

the sun-jupiter and sun-mars systems) have large asteroids, known as trojans, trapped

at their L4 and L5.

– 35 –

we have the sum of two functions of the form x/|x|3, but with their poles located at the

positions of each of the two planets. Far away from either planet, the contribution of

that planet is negligible. The functions are monotonically decreasing, so there are no

stationary points and we get something of the form shown. So we see that there are

precisely three solutions, located either side of the planets and between them.

(f) Draw a sketch showing the planets and all the possible stationary points. [2]

[Unseen] Putting together the information already obtained, we get
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2 A relativistic real scalar field ϕ in 1+1-dimensional spacetime, in units where

c = 1 with co-ordinates xµ = (t, x) and Minkowski metric ηµν =

(
1 0
0 −1

)
, has

lagrangian density given by

L =
1

2
∂µϕ∂µϕ+m2 cosϕ,

where m2 > 0.

(a) Write down the Euler-Lagrange equation of motion for ϕ. [2]

[Partly seen] Using the standard formula, we get

∂µ∂µϕ+m2 sinϕ = 0.

(b) Write down the conserved energy-momentum tensor, in terms of ϕ and
its derivatives, and discuss whether it is symmetric. [4]

[Partly seen] Using the standard formula, we have

Tµ
ν =

∂L
∂∂µϕ

∂νϕ− δµνL.

We are not entitled to ask if this is symmetric, since it has indices of different type. But
we may lower an index with the Minkowski metric ηµν to get

Tµν = ∂µϕ∂νϕ− ηµνL,

which is manifestly symmetric. Explicitly, we get

T00 =
1

2
(∂0ϕ∂0ϕ+ ∂1ϕ∂1ϕ)−m2 cosϕ

T01 = ∂0ϕ∂1ϕ = T10

T11 =
1

2
(∂0ϕ∂0ϕ+ ∂1ϕ∂1ϕ) +m2 cosϕ.

(c) Find the values of α such that the transformation ϕ(xµ) 7→ ϕ(xµ) + α is a
symmetry; if there is a corresponding conserved current, find it. [2]

[Unseen] We need cosϕ to be invariant, so α must be an integer multiple of 2π.

This is a discrete symmetry, so there is no conserved current.

(d) Show that there are no plane wave solutions to the Euler-Lagrange
equation. [2]

A
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[Unseen] A plane wave solution of the form Cei(ωt−kx), would imply that

(ω2 − k2)Cei(ωt−kx) +m2 sinCei(ωt−kx) = 0.

Unlike in the case of the Klein-Gordon equation, and since m2 ̸= 0 by assumption, we

cannot cancel the ei(ωt−kx), so this cannot be a solution for all x, t, unless C = 0, in

which case we don’t have much of a wave.

(e) Show that a solution depending on xµ only via the combination
τ = t− x/v, for some v such that −1 < v < 1, must satisfy the equation

d2ϕ

dτ 2
= A sinϕ,

where A is a constant that you should determine in terms of m and v. [2]

[Unseen] For ϕ = ϕ(t− x/v) we get ∂µ∂µϕ = (∂t∂t − ∂x∂x)ϕ = (1− 1/v2)d
2ϕ

dτ2
,

using the chain rule. Rearranging, one finds A = m2v2

1−v2
.

(f) Find the values of B and C for which there is a solution of the form

ϕ = 4arctan exp (Bτ + C)

and draw a sketch of such a solution, explaining why it is physically reasonable. [8]

[Unseen] Starting with the left hand side, and using e = exp (Bτ + C) as
shorthand, we get

dϕ

dτ
=

4Be

1 + e2

and

d2ϕ

dτ2
=

4B2e(1− e2)

(1 + e2)2
.

As for the right hand side, we compute sin 4arctan e as follows. Firstly we have
that

arctan e =
i

2
log

1− ie

1 + ie

and that

sin f =
i

2
(e−if − eif ).
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Putting these together, we get that

sin 4arctan e =
i

2
exp

(
2 log

1− ie

1 + ie

)
− i

2
exp

(
2 log

1 + ie

1− ie

)
,

or

sin 4arctan e =
i

2

(
1− ie

1 + ie

)2

− i

2

(
1 + ie

1− ie

)2

,

which simplifies to

sin 4arctan e =
4e− 4e3

(1 + e2)2
.

Hence we get a solution if B2 = A = m2v2

1−v2
, for any value of C.

(Students may also proceed using trigonometric formulae, as follows:

sinϕ = sin(4 arctan e)

= 2 sin(2 arctan e) cos(2 arctan e)

= 4 sin(arctan e) cos(arctan e)[2 cos2(arctan e)− 1]

= 4
e

1 + e2

(
2

1 + e2
− 1

)
= − 4

e−1 + e
× e− e−1

e+ e−1
.

)

Here is a sketch (assuming B > 0 and C = 0): This solution interpolates between

ϕ = 0 at τ → −∞ and ϕ = 2π at τ → +∞. It is smooth and its derivatives go to zero at

±∞, so we get finite kinetic energy. It goes to zeros of the potential energy as ±∞ so we

get finite total energy.

(g) Identify as many symmetries of the system as you can and discuss
whether these can be used to find new solutions from the solutions you have
already found. [5]

A
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[Unseen] A first observation is that the invariance of the action under space or
time translations does not give new solutions, since it corresponds to shifting C, and we
have already seen that any C yields a solution. Similarly, the lagrangian is invariant
under τ 7→ −τ , i.e. (t, x) 7→ −(t, x), but this is already captured by the fact that a
solution remains a solution when we flip the sign of B. The lagrangian is invariant under
t 7→ −t alone, but this is already captured by the fact that a solution remains a solution
when we flip the sign of v. The lagrangian is also invariant under Lorentz boosts, but
these again simply shift the value of v, generating all values with |v| < 1 = c.

However, we have already seen that there is a symmetry when we shift ϕ by an

integer multiple of 2π, and this does give more solutions, which interpolate not between

the potential minima at 0 and 2π but rather between any minimum and the next one.

Finally, the lagrangian is also invariant under ϕ 7→ −ϕ, but this has the same effect as

reversing τ and shifting by 2π.

3 Consider a particle moving in 2 + 1 spacetime dimensions described by a
hamiltonian H. The differential equation describing the propagation of this
particle from position r at time t to position r′ at time t′ is given in terms of the
Green function G(r, r′, t, t′) by(

iℏ
∂

∂t
−H

)
G(r, r′, t, t′) = δ2(r − r′)δ(t− t′).

The Green function is to be studied using the Fourier transforms

G(r, r′, E) =

∫
dt exp(iE(t− t′)/ℏ)G(r, r′, t, t′),

G(k, E) =

∫∫
d2r exp(ik · (r − r′))G(r, r′, E).

(a) Describe what it means for a Green function to be causal and how
causality may be implemented using Fourier transforms. [5]

[Seen] A Green function is said to be causal if it vanishes for t < t′ (for all values
of r and r′) and corresponds to a choice of initial conditions in the differential equation.
Clearly this is desirable on physical grounds. If we write the Green function in terms of
an integral over E, i.e. in terms of the inverse Fourier transform of the first one given
above, as

G(r, r′, t, t′) =

∫ ∞

∞

dE

2πℏ
exp(−iE(t− t′)/ℏ)G(r, r′, E),

the choice of initial conditions for the Green function in t corresponds to a freedom to

choose how we go around the singularities on the real axis in the complex E plane in the

integral. To get the causal boundary condition we should go above the poles, since for
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t < t′, we can close the integration contour by means of a semi-circle in the upper half

plane whose contribution to the integral becomes negligible as the semi-circle becomes

large. Thus, since no singularities are enclosed, the original integral is zero by Cauchy’s

theorem and we reproduce the causal boundary condition. Equivalently, we can give the

energy a small positive imaginary part.

(b) Suppose that the particle is of mass m and propagates non-relativistically
and freely, such that the Hamiltonian is H = −ℏ2∇2

2m
. Show that, with causality,

the Green function G(r, r′, E) can be written, for r′ = r and E > 0, as

G(r, r′ = r, E > 0) = lim
δ→0

Gδ,

where

Gδ = α

∫ ∞

0

dk

(
1

k − k+ − iδ
+

1

k + k+ + iδ

)
, (1)

δ is real, positive, and arbitrarily small, and α and k+ are constants that you
should determine. [7]

[Partly seen] Taking the differential equation and applying
∫
dteiE(t−t′)/ℏ to both

sides yields

(E −H)G(r, r′, E) = δ2(r − r′),

where in the first term on the LHS we used integration by parts. Next we apply∫∫
d2reik·(r−r′) to both sides to get(

E − ℏ2k2

2m

)
G(k, E) = 1,

where k = |k|. Taking the inverse Fourier transform, we now get

G(r, r′, E) =
1

4π2

∫∫
d2ke−ik·(r−r′) 1(

E − ℏ2k2
2m

) .
We want

G(r, r, E > 0) =
1

4π2

∫
d2k

1(
E − ℏ2k2

2m

) =
−m

πℏ2

∫ ∞

0
dk

k

k2 − k2+
=

−m

2πℏ2

∫ ∞

0
dk

[
1

k − k+
+

1

k + k+

]
,

where we used plane polar co-ordinates and where k2+ = 2mE/ℏ2. Let us now assume
that E > 0 as the question instructs us, and take k+ to be the positive root of 2mE/ℏ2.
We have argued that causality is enforced by adding a small positive imaginary part, ϵ
say, to E, such that the poles get shifted to ±(k+ + iδ) where δ ∝ ϵ is also real, positive,
and small. So we end up with

G(r, r, E > 0) = lim
δ→0

−m

2πℏ2

∫ ∞

0
dk

[
1

k − k+ − iδ
+

1

k + k+ + iδ

]
,
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whence we read off that k+ = +
√
2mE/ℏ and α = −m

2πℏ2 .

(c) Use the formula

ρ(E) =
−1

2πi
lim
δ→0

[
G|δ| −G−|δ|

]
,

where Gδ is defined for both positive and negative values of δ by equation (1)
above, to compute the density of states ρ(E) for E > 0. [7]

[Unseen] Inspecting the form of Gδ given, we see immediately that
G|δ| −G−|δ| = 2iImG|δ|. So now we can use the hint to write

ρ(E) =
−2i

2πi
lim
δ→0

ImG|δ| =
m

2π2ℏ2
Im

∫ ∞

0
dk

[
iπδ(k − k+)− iπδ(k + k+)

]
=

m

2πℏ2
(1 + 0) =

m

2πℏ2
,

so the density of states is constant.

(d) In graphene, the hamiltonian can be written in terms of k as H = ℏv|k|,
where v is a real positive constant. Calculate the density of states ρ(E) for E > 0. [6]

[Unseen] Following the same steps in the calculation as before, we get

ρ(E) =
−1

π
lim
δ→0

ImG|δ| =
−1

π

−1

ℏv2π
Im

∫ ∞

0
kπiδ(k − k0) =

E

2πℏ2v2
,

where k0 = E/ℏv. The expression for Gδ corresponding to equation (1) above is

Gδ = − 1

2πℏv

∫ ∞

0

kdk

k − k0 − iδ
.

[
Hint: For real x and real positive y, the imaginary part of limy→0

1
x+iy

is

given by −πδ(x).
]

4 This question involves using a microscopic model to study phase transitions
in a system in thermal equilibrium at temperature T .

(a) Describe the meaning of the term order parameter in the context of phase
transitions and give an example of such an order parameter. [4]

[Bookwork] The order parameter is a macroscopic quantity that characterizes in
general the phases of a system in thermodynamic equilibrium and measures in particular
the extent to which symmetries are broken in phases. Typically it vanishes in the
disordered phase and is non-vanishing in the ordered phase; an example is the
magnetisation in a ferromagnet.
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The Dicke model describes the interaction of light, modelled by a real-valued
field α, with a number N of two-state atomic emitters. The partition function of
the model is given by

Z(α) = e−βωα2 (
Tr e−βh(α)

)N
.

Here, h(α) is the 2× 2-matrix given by

h(α) =
∆

2
σz +

2g√
N
ασx,

while σx =

(
0 1
1 0

)
and σz =

(
1 0
0 −1

)
are the usual Pauli matrices, β = 1/kT ,

and k, ω, ∆, and g are real positive constants.

(b) Show that the free energy, F (α) = − 1
β
ln (Z(α)), can be written as

F (α) = bα2 − c ln

(
2 cosh(βE(α))

)
,

where you should determine b, c and E(α) in terms of the parameters already
given. [7]

[Partly Seen] To calculate the trace, it is easiest to first diagonalise h(α), for
which we find

h(α) =

(
E+(α) 0

0 E−(α)

)
,

where E±(α) = ±
√

∆2

4
+

4α2g2

N
. Therefore, for Z we find

Z = exp(−βωα2) [2 cosh(βE+(α))]
N .

Using the given expression for the free energy we find that

F (α) = ωα2 − N

β
ln

(
2 cosh(βE(α))

)
,

so b = ω, c = N/β and E(α) = E+(α) =

√
∆2

4
+

4α2g2

N
.

(c) Explain why the free energy always has either one minimum at α = 0 or
two minima, each at non-zero values of α (you need not find the explicit values of
α). [7]

A
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[Partly Seen] Let us first try to find the stationary points the free energy, i.e. to
solve

F ′(α) = 0.

Explicitly, we obtain

2ωα− 4αg2

E(α)
tanh (βE(α)) = 0.

Here α = 0 is obviously one solution (which would, if it is the global minimum of the free
energy, describe a disordered phase.) Stationary points with non-zero values of α (which
would correspond to ordered phases) correspond to solutions of

2ω − 4g2

E(α)
tanh (βE(α)) = 0.

Now, considered as an equation in E(α) ∈ R, this certainly has a solution at E(α) = 0,
but this does not correspond to a real value of α. For certain values of the couplings,
namely when ω/2βg2 < 1 we get two more solutions in E(α), which in turn only
correspond to real values of α if they also satisfy |E(α)| > ∆/2. Due to the symmetry of
the free energy and E(α) under α 7→ −α, we only ever get two solutions for α in this
way, which are equal and opposite in sign. So in sum we only every get one or three
stationary points.

Now we must address the question of which of these stationary points are minima.

Since the free energy is easily seen to be bounded below (recall that ω > 0), it must have

a (global) minimum somewhere. Moreover, since it is, smooth, symmetric under

α 7→ −α, and has at most three stationary points, simple considerations of continuity

show that we either have a minimum at α = 0 (and either two degenerate points of

inflection or no other stationary points elsewhere) or we have two degenerate minima at

equal and opposite values of α ̸= 0, in which case we must have a maximum at α = 0. So

we either have one minima at α = 0 or one maxima at α = 0 and two degenerate minima

(at equal and opposite non-zero values of α).

(d) Show that, when g2/ω∆ exceeds a certain value (which you should
determine), there is a phase transition and find the temperature at which the
transition occurs. [7]

[Unseen] We have already shown that there is either a minimum at α = 0 or a
maximum at α = 0, in which case there are degenerate minima at equal and opposite
non-zero values of α. This gives a simple criterion for when the phase transition occurs,
even though we cannot solve explicitly for α, namely when the stationary point at α = 0
switches from being a minimum to a maximum. And this occurs when the second
derivative of the free energy vanishes at α = 0.

The second derivative is not pleasant, but we may discard terms proportional to α,
since they evaluate to 0 at α = 0. So we get

F ′′(α) = 2ω − 4g2

E(α)
tanhβE(α) +O(α),

A
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which at α = 0 is given by

F ′′(0) = 2ω − 8g2

∆
tanh

β∆

2
.

This equation has a solution if and only if ∆ω
4g2

< 1 (since the hyperbolic tangent cannot

exceed unity) or g2

ω∆ > 1
4 .

If this condition is satisfied, we get a phase transition, with critical temperature
given by

βc =
2

∆
arctanh

∆ω

4g2

or, in other letters,

Tc =
∆

2k arctanh∆ω
4g2

.

(Students may also solve this by observing that solutions with α ̸= 0 first appear

when E(α) > ∆/2 and plugging this condition into the equation F ′(α) = 0, but they

must also explain why these solutions are minima, rather than points of inflection.)

END OF PAPER
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