next up previous contents index
Next: Subroutine fit_box_in_cell Up: Module atoms_module Previous: Subroutine partition_atoms   Contents   Index

Subroutine divide_cell


\begin{boxedminipage}{\textwidth}
\begin{verbatim}call divide_cell(lattice,cutoff,Na,Nb, &
Nc)\end{verbatim}
\end{boxedminipage}

Given a simulation cell defined by lattice vectors, how many times can the cell be divided along the lattice vectors into subcells such that a sphere of radius cutoff with centre in one subcell does not spill out of the surrounding $3\times3$ subcell block?

lattice -- real(dp), dimension(3,3), intent(in)

Box defined by lattice vectors

cutoff -- real(dp), intent(in)

Radius of sphere

Na, Nb, Nc -- integer, intent(out)

Number of supercells required along $x$, $y$ and $z$

fit_box_in_cell subroutine

gabor 2009-06-30