intellegens

Applied machine learning

The modern-day blacksmith

Dr Gareth Conduit

Introducing Alchemite[™] applied machine learning

Developed at University of Cambridge

Innovative method extracts value from Sparse, noisy data to solve complex, highdimensional problems

Key use cases: chemicals, materials, life sciences, and manufacturing

Focus on ease-of-deployment for immediate return on investment

Nickel superalloys with Rolls Royce Rolls Royce University Technology Centre, Cambridge

Vadegadde Duggappa

Bryce Conduit

Professor Howard Stone

Combustor in a jet engine

Defects form during printing

Laser

Ability for printing and welding are strongly correlated

Laser

Target properties

Elemental cost	< 25 \$kg⁻¹		
Density	< 8500 kgm ⁻³		
γ' content	< 25 wt%		
Oxidation resistance	< 0.3 mgcm ⁻²		
Defects	< 0.15% defects		
Phase stability	> 99.0 wt%		
γ' solvus	> 1000°C		
Thermal resistance	> 0.04 KΩ ⁻¹ m ⁻³		
Yield stress at 900°C	> 200 MPa		
Tensile strength at 900°C	> 300 MPa		
Tensile elongation at 700°C	> 8%		
1000hr stress rupture at 800°C	> 100 MPa		
Fatigue life at 500 MPa, 700°C	> 10 ⁵ cycles		

Composition and processing variables

Microstructure

Probabilistic neural network identification of an alloy for direct laser deposition Materials & Design **168**, 107644 (2019)

Test the defect density

Probabilistic neural network identification of an alloy for direct laser deposition Materials & Design **168**, 107644 (2019)

From University to industry

2013

Multiple properties for Rolls Royce engines

Confidential

Concurrent materials design

UNIVERSITY OF CAMBRIDGE

2013 2015

Multiple properties for Rolls Royce engines Royal Society University Research Fellowship

Multiple properties for Rolls Royce engines

Royal Society University Research Fellowship

Projects with Samsung and etherapeutics

Multiple properties for Rolls Royce engines

Royal Society University Research Fellowship

Projects with Samsung and etherapeutics

Founding of Intellegens

Confidential

intellegens.com

Confidential

Johnson Matthey Technology Review **66**, 130 (2022)

JUU6037						
	Alloy	Source	ANN	Δ_{σ}	Actual	
	Steel AISI 301L	193	269	5	238[23]	
	Steel AISI 301	193	267	5	221[23]	
	Al 1080 H18	51	124	5	120[23]	
	${ m Al}5083{ m wrought}$	117	191	14	$300,190[4,\ 23]$	
	${ m Al}5086{ m wrought}$	110	172	11	269,131[4, 23]	
	${ m Al}5454{ m wrought}$	102	149	14	124[23]	
	${ m Al}5456{ m wrought}$	130	201	11	165[23]	
	INCONEL600	223	278	10	$\geq 550[23]$	

Materials & Design **131**, 358 (2017) Scripta Materialia **146**, 82 (2018) Data Centric Engineering **3**, e30 (2022)

Computational Materials Science **147**, 176 (2018)

NASA

GRANTA

Alchemite[™] module for adaptive experimental design

Alchemite[™] developed at University of Cambridge applies machine learning to real-life data

Exploit property-property correlations to design alloy for 3D printing

Developed into software package by Intellegens

Generic tool applied to many physical, chemical, and biological sciences