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1 INTRODUCTION

Magnetic resonance experiments of increasing sophistication
probe the structure and dynamics of solid-state materials,
for example, to determine the arrangement of atoms in a
lattice, the packing of units in a molecular crystal, or the
structure of a defect site. There is a clear need for quantitative
theoretical support for these experiments, particularly to
link the observed spectrum to the underlying microscopic
structure. First-principles quantum-mechanical methods have
the potential to provide this information. Indeed, traditional
quantum-mechanical techniques have long been used to study
isolated molecules and establish important links between
structure and spectra (see Shielding Calculations). However,
when one is interested in the magnetic response of extended
systems, it is important to take into account the crystal
nature of the material; attempts to extend quantum chemical
approaches have been made, for example, by representing
the effects of the crystal lattice through an arrangement of
point charges, or by constructing an appropriately sized cluster
of atoms or molecules. However, an alternative approach is
to start from common material modeling techniques which
exploit the translation symmetry inherent in crystals. The first
of these was the use of the linear augmented plane wave
(LAPW) approach to compute electric field gradients (EFGs).
More recently, there has been a series of developments based
on the planewave-pseudopotential technique and it is now
possible to compute NMR chemical shifts and J -couplings,
as well as electron paramagnetic resonance (EPR) g-tensors
and hyperfine couplings, for crystalline systems.

2 OVERVIEW OF THE

PLANEWAVE-PSEUDOPOTENTIAL APPROACH

There are numerous first-principles methods applicable to
either molecules or solid-state systems. The following section
outlines the planewave-pseudopotential technique that has
proved to be a useful platform for the prediction of solid-state
magnetic resonance parameters. Further details can be found
in the book by Martin1 or in the review of Payne et al.2

2.1 Density Functional Theory

The behavior of a collection of electrons and nuclei can be
predicted by solving the Schrödinger equation for the system:

Ĥ� = E� (1)

where the Hamiltonian Ĥ describes the various electrostatic
interactions between the particles. An important simplification
can be made by noting that the mass of the nuclei is much
greater than the electron mass. This leads to the Born-
Oppenheimer approximation, in which the electronic and
nuclear degrees of freedom can be separated. Even with this
simplification, it is still impractical to solve equation (1) for
anything other than the most trivial system. The difficulty lies
in its many-body nature—the fact that the electronic degrees
of freedom are coupled to each other.

The Kohn–Sham formulation of density functional theory
(DFT) treats the electronic charge density ρ as the fundamental
variable and exactly maps the many-body equation (1) onto a
set of N equations involving single-particle wavefunctions,

− �2

2me

∇2�(r) + veff(r)�(r) = ε�(r) (2)

where the Kohn–Sham potential, v eff(r) contains terms arising
from the interaction with the ionic charges V ion(r), the
Coulomb interaction energy of the charge density interacting
with itself (known as the Hartree energy), and a potential
Vxc, which describes the effects of exchange and correlation
between the electrons:

veff(r) = Vion(r) +
∫

dr′ ρ(r′)
|r − r′| + Vxc[ρ(r)] (3)

The set of independent particle equations (2) and (3) are
amenable to computation, but at the price that the form of the
potential Vxc is unknown. It is necessary to make physically
motivated approximations in order to make progress. Fortu-
nately, simple approximations have been shown to be adequate
for many purposes. In solid-state studies, the most simple use-
ful approximation is the local density approximation (LDA)
in which the exchange-correlation energy at a given point is
taken to be the same as in a uniform electron gas with the
same charge density. For many properties, adding terms depen-
dent on the gradient of the density (the generalized gradient
approximation, GGA) provides an improvement. Numerous
GGAs have been proposed; the one by Perdew, Burke, and
Ernzerhof3 (PBE) has been used for many solid-state NMR
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calculations. In quantum-chemical calculations based on local-
ized orbital basis sets, it is common to use hybrid functionals,
which include a proportion of Hartree–Fock exchange. In an
extended basis, such as planewaves, hybrid functionals have a
high computational cost. While hybrid functionals have been
used to compute the ground-state structures of crystals, they
have not yet been applied for the calculation of NMR chemical
shifts in solids.

2.2 Bloch’s Theorem

For any realistic crystal, the total number of electrons is vast.
It is naturally desirable to exploit the translational symmetry
of a crystalline material and consider only the crystallographic
unit cell under periodic boundary conditions. That this is
possible follows from Bloch’s theorem:a As the potential has
lattice periodicity (i.e., v eff(r) = v eff(r + R) for all R where R
is a lattice vector), then the eigenstates of the single-particle
Hamiltonian can be written as

�n,k(r) = eik.run,k(r) (4)

where un,k is a function periodic in the unit cell such that
un,k(r) = un,k(r + R) for all lattice vectors R. These Bloch
states are labeled by their crystal momentum k. The only
unique values of k lie within the reciprocal unit cell, or
equivalently and by convention, within the first Brillouin Zone
(i.e., the Wigner–Seitz cell of the reciprocal lattice).

The problem of solving for an infinite number of electrons
has become one of calculating for a finite number of bands at
an infinite number of k-points. However, physical properties
are expected to smoothly vary with k and hence many integrals
can be well approximated by a finite sampling of k. A common
scheme for Brillouin zone integration consists of the sets
of regular integration grids introduced by Monkhorst and
Pack.4

2.3 The Supercell Approximation

The application of periodic boundary conditions forces peri-
odicity on the system studied. To address systems that do
not have full three-dimensional translational symmetry—for
example, in the study of disordered systems, defects, impuri-
ties, or the interaction of molecules and surfaces, the so-called
supercell approximation can be used. Aperiodic systems are
approximated by enclosing the region of interest in either bulk
material (for a defect) or vacuum (for a molecule) and then
periodically repeating this cell throughout space (Figure 1).
The supercell must be large enough for the fictitious interac-
tions between neighboring cells to be negligible.

2.4 The Planewave Basis Set

In order to solve the eigenvalue problem of equation (2)
numerically, the eigenstates must be represented by some basis
set. While there are many possible choices, the one made here
is to use planewaves as the basis. There are many advantages
in the use of planewaves: they form a mathematically simple
basis, they naturally incorporate periodic boundary conditions,
and, perhaps most importantly, planewave calculations can be

Figure 1 The supercell approximation: modeling a point defect within
periodic boundary conditions

taken systematically to convergence as a function of the size
of the basis. The Kohn–Sham eigenstates are expressed as

�n,k(r) =
∑

G

cn,k(G)ei(k+G).r (5)

where the sum is over all reciprocal lattice vectors G. cn,k(G)
are the coefficients to be determined in solving equation (2). To
truncate the basis set, the sum is limited to a set of reciprocal
lattice vectors contained within a sphere with a radius defined
by the cutoff energy, E cut:

�
2|k + G|2

2m
≤ Ecut (6)

Hence, the basis set is defined by the maximum kinetic
energy component it contains. Physical quantities can be
converged systematically by increasing E cut. A fast-fourier
transform (FFT) can be used to change the representation of
the eigenstates from a sum of Fourier components to a uniform
grid of points in the real-space unit cell. The use of numerically
efficient FFTs is one key to the success of the planewave-
pseudopotential formalism—it allows individual operations to
be performed in the most efficient basis, e.g., the kinetic energy
operator in Fourier space, and a local potential in real space.

2.5 The Pseudopotential Approximation

The electrons in an atom can be divided into two
types—core electrons and valence electrons. The core elec-
trons are tightly bound to the nucleus, while the valence
electrons are more extended. A working definition for core
electrons is that they are the ones that play no part in the
interactions between atoms, while the valence electrons dic-
tate most of the properties of the material. It is common to
make the frozen core approximation; the core electrons are
constrained not to differ from their free atomic nature when
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Figure 2 Si atomic orbitals: all-electron 1s, 2s, and 3s and the 3s
pseudized orbital. Inset: all-electron potential and the corresponding
potential felt by the pseudized 3s state

placed in the solid-state environment. This reduces the number
of electronic degrees of freedom in an all-electron calculation.
It is a very good approximation. A different, but physically
related, approach is taken in the pseudopotential approxima-
tion. Since, in an all-electron calculation, the valence electron
wavefunctions must be orthogonal to the core wavefunctions
they necessarily have strong oscillations in the region near the
nucleus (see the all-electron wavefunction in Figure 2). Given
that a planewave basis set is to be used to describe the wave-
functions, these strong oscillations are undesirable—requiring
many planewaves for an accurate description. Further, these
oscillations are of very little consequence for the electronic
structure in the solid, since they occur close to the nucleus. In
the pseudopotential approach, only the valence electrons are
explicitly considered, the effects of the core electrons being
integrated within a new ionic potential. The valence wave-
functions need no longer be orthogonal to the core states, and
so the orthogonality oscillations disappear; hence, far fewer
planewaves are required to describe the valence wavefunc-
tions. Numerous schemes to produce optimally soft pseu-
dopotentials have been developed. Common choices are the
norm-conserving potentials due to Troullier and Martins5 and
Vanderbilt’s ultrasoft scheme.6

3 SHIELDING IN A PERIODIC SYSTEM

When a sample of matter is placed in a uniform external
magnetic field electronic currents flow throughout the material.
For an insulating nonmagnetic material, only the orbital motion
of the electrons contribute to this current. The current density
j(r), produces a nonuniform induced magnetic field in the
material, which is given by the Biot–Savart law as

Bin(r) = μ0

4π

∫
d3r ′j(r′) × r − r′

|r − r′|3 (7)

(note that we have used SI units throughout this article,
which accounts for the different constants in these equations
as compared to those in the original papers). The magnetic

shielding tensor is defined as the ratio between this induced
field and the external applied field

Bin(r) = −σ (r)Bext (8)

It is clear that the question of computing the shielding
tensor is that of computing the induced electronic current. As
the magnetic fields used in NMR experiments are small (in
the sense that the corresponding Zeeman energy is a small
term in the Hamiltonian), we can compute the induced current
within perturbation theory, keeping quantities to linear order
in the external field (we represent such linear quantities by a
superscript (1)). To linear order, the current is given by

j(1)(r′) = 2
∑

o

[〈�(0)
o |Jp(r′)|�(1)

o 〉 + 〈�(1)
o |Jp(r′)|�(0)

o 〉]
+ 2

∑
o

〈�(0)
o |Jd(r′)|�(0)

o 〉 (9)

where the factor of 2 accounts for spin degeneracy and
the current operator, J(r′), has been written as the sum of
diamagnetic and paramagnetic terms,

J(r′) = Jd(r′) + Jp(r′) (10)

Jd(r′) = e2

me

A(r′)|r′〉〈r′| (11)

Jp(r′) = − e

2me

p|r′〉〈r′| + |r′〉〈r′|p (12)

Within perturbation theory, |�(1)
o 〉 is given by

|�(1)
o 〉 =

∑
e

|�(0)
e 〉〈�(0)

e |
ε − εe

H (1)|�(0)
o 〉 = G(ε(0)

o )H (1)|�(0)
o 〉

(13)
where the Green function G(ε

(0)
o ) has been introduced. Using

the symmetric gauge for the vector potential, A(r) = 1/2B × r,
the linear-order Hamiltonian is given by H (1) = e/meA · p and
we arrive at the following expression for the induced current,

j(1)(r′) = 4e

me

∑
o

Re
[〈�(0)

o |Jp(r′)G(ε(0)
o )r × p|�(0)

o 〉] · B

− e2

2me

ρ(r′)B × r′ (14)

where ρ(r′) = 2
∑

o 〈�(0)
o |r′〉〈r′|�(0)

o 〉 is the ground-state
charge density. So far, no distinction between finite and
extended systems has been made. In the following sections,
the conceptual and practical difficulties in applying equation
(14) to extended systems are discussed.

3.1 The Position Operator Problem

For a finite system there is, in principle, no problem in
computing the induced current directly from equation (14).
However, for an extended system, there is an obvious problem
with the second (diamagnetic) term of equation (14); the
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presence of the position operator, r, will generate a large
contribution far away from r = 0, and the term will diverge in
an infinite system. The situation is saved by recognizing that an
equal but opposite divergence occurs in the first (paramagnetic)
term of equation (14), and so only the sum of the two terms
is well defined. Through the use of a sum rule, we arrive at
an alternative expression for the current

j(1)(r′) = 4e

me

∑
o

Re
[〈�(0)

o |Jp(r′)G(ε(0)
o )(r − r′) × p|�(0)

o 〉]· B

(15)

In an insulator the Green function G(ε
(0)
o ) is localized and

so j(1)(r′) remains finite at large values of (r − r′).
At this point, there still remains the question of the practical

computation of the current, which for reasons of efficiency, it
is desirable to work with just the part of the Bloch function,
which is periodic in the unit cell (un,k in equation 4). Equation
(15) is not suitable for such a calculation as the position oper-
ator does not have the periodicity of the unit cell. One solution
to this problem is to consider the response to a magnetic field
with a finite wavelength, q . In the limit that q → 0, the uni-
form field result is recovered. For a practical calculation, this
enables one to work with the un,k, at the cost that a calculation
at a point in the Brillouin Zone k will require knowledge of
the wavefunctions at k ± q (i.e., six extra calculations for the
full tensor). A complete derivation was presented in Refs. 7,
8 leading to the final result for the current,

j(1)(r′) = lim
q→0

1

2q

[
S(r′, q) − S(r′, −q)

]
(16)

where

S(r′, q) = 2e

meNk

∑
i=x,y,z

∑
o,k

Re

[
1

i

×〈u(0)
o,k|Jp

k,k+qi
(r′)Gk+qi

(εo,k)B × ûi · (p + k)|u(0)
o,k

]
(17)

qi = qûi , N k is the number of k-points included in the
summation and

Jp
k,k+qi

= − e

2me

(p + k)|r′〉〈r′| + |r′〉〈r′|(p + k + qi ) (18)

An alternative solution to this problem was developed by
Sebastiani.9 Rather than compute the magnetic response using
extended Bloch functions, a transformation to Wannier orbitals
is made. As Wannier orbitals can be chosen to be well localized
around a particular lattice site, it is then possible to apply
equation (15) directly, using a position operator in the form of
a saw-tooth function.

When a planewave basis set is used, j(1)(r′) will be obtained
on the points of the FFT grid. In general, these will not
coincide with the positions of the nuclei, and so to compute
the induced field, B(1)(R), equation (7) and j(1)(r′) are Fourier
transformed into reciprocal space. The induced magnetic field
can then be simply evaluated as

B(1)(G) = μ0
iG × j(1)(G)

G2
(19)

where G is a reciprocal lattice vector. B(1)(R) is subsequently
obtained by a explicit Fourier transform at the nuclear
positions R

B(1)(R) =
∑

G

eiG·RB(1)(G) (20)

The computational work in evaluating this Fourier transform
is very much smaller than that needed to obtain j(1)(r′). As
such, the cost of obtaining the shielding at a single atomic
site is essentially identical to evaluating it at all atomic sites.
Taking this further, it is also straightforward to obtain the
shielding on an arbitrary set of points—the so-called nucleus
independent chemical shift (NICS) or to make a map of the
flow of the induced current; see Figure 3.

For G = 0, equation (19) cannot be applied. Indeed the
G = 0 component of the induced magnetic field is not a
bulk property;10 rather it is determined by the induced
currents on the surface of the sample. In particular, its value
depends on the shape of the sample, and is determined by
macroscopic magnetostatics (see Magnetic Susceptibility and
High Resolution NMR of Liquids and Solids). In order to
compare with results from MAS experiments, a spherical
sample should be assumed for which

B(1)(G = 0) = 2μ0

3
←→χ B (21)

where ←→χ is the macroscopic magnetic susceptibility. ←→χ
is directly provided by first-principles calculation, and can
be used to adjust the shieldings for arbitrary sample shapes,
should this be required.

Finally, we note that experiments typically measure the
change in shielding relative to a reference standard—the
chemical shift δ. The conversion is straightforward

δ = −[σ − σ iso
ref ] (22)

0.604E + 11

Minimum vectorMinimum vector

0.280e + 13

Figure 3 Current flow in porphyrin. Height above molecular plane
is 0.53 (Bohr). Vectors are scaled such that minimum: 0.6 ×
1011nAT −1Bohr−2, maximum: 0.3 × 1013nAT −1Bohr−2
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The shielding of the reference standard, σ iso
ref , could be

obtained by performing a calculation on the standard com-
pound itself, but this is often not convenient—for example, if
the reference is a liquid or solution. For this reason, most stud-
ies have obtained σ iso

ref as the intercept of a line of unit gradient
fitted to a graph of calculated shieldings against experimental
shifts.

3.2 Core States and Pseudopotentials

In the planewave-pseudopotential approach, it is implicit that
the core electrons can be treated separately from the valence
states in an atomic code. Historically, the validity of the frozen
core approximation for NMR properties had been doubted, but
a careful study by Gregor, Mauri, and Car11 showed that,
if the core and valence states are partitioned in a gauge-
invariant way, the shielding of the core electrons is chemically
insensitive. The contribution of the core electrons to chemical
shifts can hence be neglected. If absolute shieldings are
required, the core contribution is most conveniently calculated
by setting the gauge origin at the atomic center, so that
the shielding is purely diamagnetic and given by the Lamb
formula,

σij = δij

μ0e
2

4πme

∫
d3r

n(r)
r

(23)

As shown in Figure 2, the use of pseudopotentials implies
a nonphysical form for the wavefunction in the region
close to the nucleus. For this reason, a formalism based on
pseudopotentials might appear a poor choice for the calculation
of nuclear magnetic resonance parameters. The upper part of
Figure 4 shows shieldings computed for a range of isolated
molecules by using only the pseudowavefunctions (i.e.,
neglecting the fact that the pseudowavefunction differs from
the true all-electron wavefunction close to the nucleus), and the
corresponding large basis set quantum-chemical calculations.
For proton shieldings, the agreement is reasonable. For 13C,
the pseudopotential results reproduce the general trend of
the all-electron shieldings although the slope is somewhat
less than unity. Uncorrected pseudopotential calculations for
proton and first row elements have been presented (see e.g.,
Ref. 12); the agreement can be improved by using rather
hard pseudopotentials (i.e., a small matching radius). For the
second row elements, Si and P, Figure 4 shows the impact of
the pseudopotential approximation to be dramatic with almost
all of the chemical sensitivity lost. In order to make direct
comparison to experiment, it is therefore vital to correctly
account for the use of pseudopotentials and to obtain shieldings
with the accuracy of all-electron calculations.

The basis for such an approach was provided by projector
augmented wave (PAW) method introduced by van de Walle
and Blöchl.14 In this scheme, a linear transformation T maps
the valence pseudo wavefunctions |�̃〉 onto the corresponding
all-electron wavefunctions, |�〉 = T |�̃〉,

T = 1 +
∑
R,n

[|φR,n〉 − |φ̃R,n〉]〈p̃R,n| (24)

|φR,n〉 are all-electron atomiclike states obtained from
a calculation on an isolated atom and |φ̃R,n〉 are the
corresponding pseudized states. 〈p̃R,n| are a set of projectors
such that 〈p̃R,n|φ̃R′,m〉 = δR,R′δn,m. R labels the atomic site
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Figure 4 Isotropic magnetic shielding for nuclear sites in a range of
molecules. The graphs show shieldings obtained by the GIPAW method
and ultrasoft pseudopotentials plotted against all-electron shielding. The
straight line represents perfect agreement. The upper figure (a) shows
the contribution without GIPAW augmentation, the lower figure (b) plots
the total contribution. (Reproduced from Ref. 13. © American Physical
Society, 2007)

and n is a composite index that accounts for the angular
momentum and the number of projectors. In simple terms, the
PAW transformation works by computing the component of a
certain atomic-like state (say 2p) in a pseudowavefunction,
and replacing the pseudized component by its all-electron
form. This may seem like a rather approximate procedure,
but because the atomic states form a good basis for the
wavefunction in the region close to the nucleus, it can be
made highly accurate by using multiple projectors.

Within the PAW scheme, for an all-electron local or
semilocal operator O , the corresponding pseudooperator, Õ,
is given by

Õ = O +
∑

R,n,m

|p̃R,n〉
[〈φR,n|O|φR,m〉

− 〈φ̃R,n|O|φ̃R,m〉]〈p̃R,m| (25)

As constructed in equation (25), the pseudooperator Õ

acting on pseudowavefunctions will give the same matrix
elements as the all-electron operator O acting on all-electron
wavefunctions.

For a system under a uniform magnetic field, PAW alone
is not a computationally realistic solution. In using a set of
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localized functions, the gauge-origin problem, well known in
quantum chemical approaches (see Shielding: Overview of
Theoretical Methods), has been introduced. In short, equation
(25) will require an infinitely large number of projectors
in order for the computed shieldings to be translationally
invariant (i.e., independent of the choice of gauge origin). To
address this problem, Pickard and Mauri8 introduced a field-
dependent transformation operator T B, which, by construction,
imposes the translational invariance exactly:

TB = 1 +
∑
R,n

e
ie
2h

r·R×B[|φR,n〉 − |φ̃R,n〉]〈p̃R,n|e− ie
2h

r·R×B (26)

The resulting approach is known as the gauge including
projector augmented wave (GIPAW ) method. Although orig-
inally formulated for norm-conserving pseudopotentials, the
extension to the more computationally efficient ultrasoft pseu-
dopotentials has been presented by Yates et al .13 Figure 4
shows shieldings computed using ultrasoft pseudopotentials
and the GIPAW scheme, together with large basis set quantum-
chemical calculations. For the shieldings in these isolated
molecules, the agreement is essentially perfect. For crystalline
systems, validation of the technique comes only from compar-
ison to NMR experiments; numerous studies have been made
in recent years, just two are mentioned in section “Examples”.

4 OTHER MAGNETIC RESONANCE PARAMETERS

4.1 Electric Field Gradient

For a quadrupolar nucleus (spin I > 1/2), the observed
NMR response includes an interaction between the quadrupole
moment of the nucleus Q, and the electric field gradient (EFG)
generated by its surroundings. The EFG is a second rank,
symmetric, traceless tensor V (r) given by

Vαβ(r) = ∂Eα(r)
∂rβ

− 1

3
δαβ

∑
γ

∂Eγ (r)
∂rγ

(27)

where α,β,γ denote the Cartesian coordinates x,y,z and Eα(r)
is the local electric field at the position r, which can be
calculated from the charge density n(r):

Eα(r) =
∫

d3r
n(r)

|r − r′|3 (rα − r ′
α) (28)

The EFG tensor is then equal to

Vαβ(r) =
∫

d3r
n(r)

|r − r′|3
[
δαβ − 3

(rα − r ′
α)(rβ − r ′

β)

|r − r′|2
]

(29)

To compute the EFG tensor in a periodic system is less
demanding than calculating either the shielding or indirect
coupling tensors, as it requires only knowledge of the ground-
state charge density, ground-state wavefunctions and the
position of the ions in the unit cell—no linear response
calculation is required.

The quadrupolar coupling constant, CQ and the asymmetry
parameter, ηQ can be obtained from the diagonalized electric
field gradient tensor whose eigenvalues are labeled VXX, VYY,
VZZ, such that |V ZZ|>|V XX|>|V YY|:

CQ = eVZZQ

h
(30)

and

ηQ = VYY − VXX

VZZ
(31)

Within the planewave-pseudopotential approach, the charge
density is expressed as the sum of three terms,15 and there
are correspondingly three distinct contributions to the EFG.
First, there is a contribution arising from the ionic charges
(sum of the nuclear and core-electron charge). From the site
under consideration, this appears as an infinite lattice of point
charges whose EFG contribution can be obtained using an
Ewald summation. Secondly, there is the contribution of the
pseudized valence charge density, which is evaluated by using
a reciprocal space form of equation (29). Finally, there is a
PAW contribution to account for the difference between the
pseudo and all-electron charge densities on the atomic site
under consideration.

4.2 Indirect Coupling

The indirect (or J ) coupling manifests itself in splittings of
the NMR resonance, or as a modulation of the spin-echo signal.
Physically, the coupling arises from the interaction of two
nuclei, K and L, with magnetic moments, μK and μL, mediated
by the electrons in the system. The first complete analysis
of this indirect coupling was provided by Ramsey16,17 who
showed that the J -coupling tensor,

←→
J KL, is obtained from

the magnetic field induced at nucleus K due to the perturbative
effect of nucleus L,

B(1)
in (RK) = �γKγL

2π

←→
J KL · μL (32)

where γ K and γ L are the gyromagnetic ratios of nuclei K
and L. At the nonrelativistic level, two distinct mechanisms
contribute to B(1)

in (RK). First, the nuclei interact via the
electronic charge; the nucleus L induces an orbital current
j(1)(r) which, in turn, creates a magnetic field at nucleus K.
The nuclei also interact via the electronic spin; the nucleus L
inducing a polarization of the electronic spin, m(1)(r), which
also contributes to the magnetic field at nucleus K. B(1)

in (RK)

is given by

B(1)
in (RK) = μ0

4π

∫
m(1)(r) ·

[
3rKrK − |rK|2

|rK|5
]

d3r

+ μ0

4π

8π

3

∫
m(1)(r)δ(rK) d3r

+ μ0

4π

∫
j(1)(r) × rK

|rK|3 d3r (33)

rN = r − RN with RN the position of nucleus N; δ is the Dirac
delta function.
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The induced current can be computed using the equivalent
expression for the shielding, equation (14), but using a vector
potential of the form A(r) = μ0

4π
μL×rL
|rL|3 . m(1)(r) can also be

computed through perturbation theory,

m(1)(r) = gβ
[
n(1)

↑ (r) − n(1)
↓ (r)

]
= 2gβn(1)

↑ (r) (34)

with g the Lande g-factor and β the Bohr magneton. n(1)
↑ (r)

(n(1)
↓ (r)) is the spin up (down) charge density given by

n(1)
↑ (r) = 2

∑
occ Re[〈�(0)|r〉〈r|�(1)

o 〉]. |�(1)
o 〉 is given by

|�(1)
o 〉 =

∑
e

|�(0)
e 〉〈�(0)

e |
ε − εe

H
(1)
M |�(0)

o 〉 = G(ε(0)
o )H

(1)
M |�(0)

o 〉
(35)

with the first-order Hamiltonian given by the well-known
Fermi-contact (FC) and spin-dipolar (SD) terms

H
(1)
M = HFC + HSD (36)

HFC = gβ
μ0

4π

8π

3
S · μLδ(rL) (37)

HSD = gβ
μ0

4π
S ·

(
3rL(μL · rL) − r2

LμLI
|rL|5

)
(38)

where S is the Pauli spin operator and I the identity matrix.
For analysis, it is common to divide the total J -coupling tensor
into five components, although only the total tensor can be
observed experimentally

←→
J KL = ←→

J DSO
KL + ←→

J PSO
KL + ←→

J FC
KL + ←→

J SD
KL + ←→

J SD/FC
KL

(39)

DSO and PSO refer, respectively, to the diamagnetic and
paramagnetic-induced current response. The first four terms
arise from symmetric interactions, with the same coupling
mechanism at the perturbing and receiving sites. The term←→
J SD/FC

KL is a cross term between the SD and FC interactions,

which contributes only to the anisotropic part of
←→
J KL.

Joyce et al.18 developed a technique to compute
J -coupling tensors for solid-state systems using the planewave-
pseudopotential formalism. PAW is used to provide all-electron
accuracy; it is a strict test of the theory because the wavefunc-
tion reconstruction must be performed at both the perturbing
and receiving nuclei.

Unlike the case of nuclear shielding, even for a truly
periodic system, the J -coupling perturbation breaks the
translational symmetry of the crystal, and a simulation
supercell of sufficient size to inhibit the interaction of
periodically repeated images of the perturbing site must be
chosen. Often, the primitive crystallographic cell is large
enough to give converged results; however, in some cases,
it is necessary to consider a larger simulation cell containing
two or more primitive cells. Initial results are promising;
Table 1 shows computed and experimental 29Si and 31P
NMR parameters for the silicophosphate Si5O(PO4)6. Figure 5
highlights the two distinct coupling pathways between the P
and Si2 sites—the couplings are rather different in size and
there is good agreement between experiment and calculation.

Table 1 Calculated NMR Chemical Shifts and J-Coupling for the
Silicophosphate Si5O(PO4)6. The Experimental Values are in Brackets.
(Calculasions from Ref. 18, Experiment from Ref. 19)

Coupling 31P (ppm) 29Si (ppm) J 2
P – O – Si (Hz)

J 2
P – O3 – Si1

−47.4 (−43.8) −214.8 (−213.3) −17.12 (15 ± 2)
J 2

P – O2 – Si2
−218.7 (−217.0) −16.26 (14 ± 2)

J 2
P – O5 – Si2

−218.7 (−217.0) −1.17 (4 ± 2)
J 2

P – O4 – Si3
−128.6 (−119.1) −14.13 (12 ± 2)

4.3 Metallic Systems

The shielding in metallic systems arises from two mecha-
nisms. The familiar orbital response of the electrons, outlined
in section, “Shielding in a Periodic System” and the Knight
shift, which arises from a spin polarization induced by the
external field. d’Avezac et al .20 have presented a planewave-
pseudopotential approach to compute the shielding in metals.
This uses GIPAW to compute the orbital response and PAW for
the Knight shift. Chemical shifts for the elemental metals Al,
Li, and Cu have been presented, showing good agreement with
experiment. The calculations are somewhat more demanding
than the equivalent calculation for insulators, because a very
fine sampling of the Brillouin Zone is required.

4.4 EPR

In crystalline materials, EPR can be used to study
paramagnetic defects. EPR spectra of spin 1/2 centers have
two contributions: the hyperfine tensor A and the g-tensor g,
which are defined through the following effective Hamiltonian

Heff = α

2
S · g · B +

∑
I

S · AI · II (40)

where α is the fine structure constant and the summation I runs
over nuclei. The hyperfine tensor arises from the interaction
of the nuclei with the ground-state spin density. This term
has been calculated within the planewave-pseudopotential
approach; indeed it was for this property that the PAW scheme
was first introduced.14 The g-tensor arises from the interaction
of the electronic spin with the external magnetic field. This
term plays a somewhat similar role to the shielding in NMR;

14 ± 2 (16) Hz

4 ± 2 (1) Hz

P

P

P

P

P

P

O5

O5

O5
O2

O2
O2

Si2

Figure 5 Schematic representation of the coupling pathways between
Si2 and P in Si5O(PO4)6, showing the two experimental (calculated)
J-couplings
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induced electronic currents in the sample modify the g-tensor
from its vacuum value. The GIPAW approach has been used to
compute g-tensors in several crystalline materials,21 including
defects in α-quartz and zirconia.

4.5 Heavy Elements and Relativistic Effects

The Schrödinger equation is nonrelativistic; it is valid
only for particles whose velocity is much smaller than the
speed of light. This is a good approximation for electrons in
materials comprising of light elements, but as we descend the
periodic table relativistic effects begin to play an important
role because both the low-lying core states, and the valence
states in the region close to the nucleus obtain high values
of momentum. Relativity has a significant effect on the
bonding and structural properties of materials containing heavy
elements, and unsurprisingly it also has a large influence on
their magnetic resonance parameters. In treating such elements,
it is therefore necessary to move to a description based on the
Dirac equation, which is able to account for the influence of
special relativity on the electronic states.

Numerous quantum-chemical approaches incorporating rel-
ativistic effects have been developed (see Relativistic Com-
putation of NMR Shieldings and Spin-Spin Coupling
Constants). The use of pseudopotentials provides an alterna-
tive, simple, and computationally efficient route to including
relativistic effects. In the initial construction of the pseudopo-
tential, the free atom is treated relativistically, ensuring that the
valence states have the correct relativistic eigenvalues. In the

pseudopotential construction, it is usual to average over spin-
orbit split states (the scalar-relativistic approximation), but it
is possible to obtain pseudopotentials that include spin-orbit
splitting. For bonding properties, it is sufficient to use only rel-
ativistic pseudopotentials; by construction, ‘the pseudovalence
wavefunctions have low momentum throughout space and can
be treated nonrelativistically. For the calculation of properties
with a large contribution in the region close to the nucleus,
it is necessary to use PAW operators modified to account for
relativistic effects. Yates et al.22 have used GIPAW operators
modified using the zeroth order regular approximation (ZORA)
to compute 77Se and 125Te shieldings. Within this scheme, a
relativistic calculation on TeH2 has the same computational
cost as a nonrelativistic calculation on OH2.

5 EXAMPLES

The methods described in this article have been applied to a
wide range of solid materials from molecular crystals (e.g.,
pharmaceutical polymorphs and amino acids) to inorganic
solids such as silicate glasses and perovskites. Applications to
molecular crystals are presented in the article by Harris et al.
(see Chemical Shift Computations for Crystalline Molecular
Systems: Applications), here two illustrative examples are
briefly mentioned.

Figure 6 shows a Heteronuclear Multiple Quantum Coher-
ence (HMQC) spectra of the disaccharide maltose, in com-
parison with GIPAW calculations treating the system first as
an isolated molecule and then as a full periodic crystal. The
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Figure 6 13C–1H MAS J -HMQC solid-state NMR spectrum of maltose. The crosses show the positions of the peaks computed using the GIPAW
method while treating the system as an isolated molecule (blue) and as a full crystal (red). (Reprinted with permission from Ref. 22. © (2005)
American Chemical Society)
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Figure 7 Cross-sections from the triple-quantum 17O MAS spectrum
of orthoenstatite. Shown in red are lineshapes simulated using NMR
parameters computed using the GIPAW method. (Reprinted with
permission from Ref. 23. © (2007) American Chemical Society)

excellent agreement between the crystalline calculation and
experiment is sufficient to produce a full site assignment of
the resonances. The significant differences between the isolated
molecule and full crystal calculations show the importance of
intramolecular interactions on the NMR parameters for this
system. For maltose these changes have been shown to be due
to the presence of so-called weak (C–H–O) hydrogen bonds.23

Figure 7 shows MAS line shapes extracted from an 17O
triple-quantum MAS spectrum of the MgSiO3 polymorph
orthoenstatite. These have characteristic quadrupolar line-
shapes. In two cases, (b) and (c), the lineshape arises from
the overlap of two resonances. Chemical shift and EFG ten-
sors were computing using the planewave-pseudopotential
approach, and the corresponding lineshapes, obtained using
the calculated δiso, CQ, and ηQ, are also shown in Figure 7.
Again, the good agreement between theory and experiment
allows a site assignment of the experimental resonances.24

End Note

aNamed for Felix Bloch. This was result was derived by
Bloch as part of his thesis work in 1928, long before his part
in the history of NMR.
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