next up previous
Next: Density-matrix representation Up: Contents Previous: Outline

Density-matrix formulation

In DFT, the $N$-particle Kohn-Sham system can be represented by:

EITHER a set of $N$ single-particle wavefunctions $\{ \psi_i({\bf r})
\}$
OR the single-particle density-matrix $\rho({\bf r},{\bf r'})$
  Wavefunctions $\{ \textcolor{green}{\psi_i({\bf r})}\}$ Density-matrix $\rho({\bf r},{\bf r'})$
Density $\displaystyle{\sum_i^{\rm {occ}} \left\vert \textcolor{green}{\psi_i({\bf r})}\right\vert^2}$ $\rho({\bf r},{\bf r})$
Kinetic energy $\displaystyle{-{1 \over 2} \sum_i^{\rm {occ}} \int
\textcolor{green}{\psi_i^{\ast}({\bf r})}\nabla_{\bf r}^2 \textcolor{green}{\psi_i({\bf r})}{\rm d}{\bf r}}$ $\displaystyle{-{1 \over 2} \int \left[ \nabla_{\bf r'}^2 \textcolor{magenta}{\rho({\bf
r},{\bf r'})}\right]_{{\bf r'} = {\bf r}} {\rm d}{\bf r}}$
Constraints $\displaystyle{\int \textcolor{green}{\psi_i^{\ast}({\bf r}) \psi_j({\bf r})}{\rm d}{\bf r} = \delta_{ij}}$ ${\rm Tr}(\textcolor{magenta}{\rho}) = N; \qquad \textcolor{magenta}{\rho^2}= \textcolor{magenta}{\rho}$

next up previous
Next: Density-matrix representation Up: Contents Previous: Outline
Peter D. Haynes 2001-11-09