next up previous
Next: Discrete Fourier transforms Up: Contents Previous: Motivation

Fourier series


 
Bloch's theorem:

\begin{displaymath}\psi({\bf r}) = \exp( {\rm i} {\bf k} \cdot {\bf r}) u_{\bf k}({\bf r}) \end{displaymath}

where $u_{\bf k}({\bf r})$ is cell-periodic i.e. $u_{\bf k}({\bf r} +
{\bf R}) = u_{\bf k}({\bf r})$ for any lattice vector ${\bf R}$.
$\Rightarrow$
Expand $u_{\bf k}({\bf r})$ as a Fourier series:

\begin{displaymath}u_{\bf k}({\bf r}) = \sum_{\bf G} c_{\bf k}({\bf G}) \exp( {\rm i}
{\bf G} \cdot {\bf r}) \end{displaymath}

where ${\bf G}$ denotes a reciprocal lattice vector.
 
Fourier inversion theorem gives:

\begin{displaymath}c_{\bf k}({\bf G}) = {1 \over V_{\rm cell}} \int_{\rm cell} {...
...r}   u_{\bf k}({\bf r}) \exp( -{\rm i} {\bf G} \cdot {\bf r})
\end{displaymath}



Peter D. Haynes 2001-11-07