next up previous
Next: Acknowledgements Up: Localised spherical-wave basis set Previous: 8. Conclusions

Appendix

In this section we list some standard results used in the analysis in this paper [4].
    $\displaystyle j_{\ell + 1}(x) = {\ell \over x} j_{\ell}(x) - j_{\ell}'(x)$ (38)
    $\displaystyle j_{\ell - 1}(x) = {{\ell + 1} \over x} j_{\ell}(x) + j_{\ell}'(x)$ (39)
    $\displaystyle \mathrm{e}^{{\mathrm{i}} {\bf k} \cdot {\bf r}} = 4 \pi
\sum_{\el...
...\ell}(k r)~{\bar Y}_{\ell m} (\Omega_{\bf k})~{\bar Y}_{\ell m}(\Omega_{\bf r})$ (40)
    $\displaystyle \int_{a}^{b} j_{\ell}(mx) j_{\ell}(nx) x^2 \mathrm{d}x$  
    $\displaystyle \qquad
= \frac{1}{m^2 - n^2} \left[ x^2 \left\{ n j_{\ell}(m x) j_{\ell-1}(n
x) - m j_{\ell-1}(m x) j_{\ell}(n x) \right\} \right]_{a}^{b}$ (41)
    $\displaystyle \int_{a}^{b} j_{\ell}^2 (m x) x^2 \mathrm{d}x =
{\textstyle{1 \ov...
...biggl[ x^2 \biggl\{ x j_{\ell}^2 (m x) + x j_{\ell - 1}^2 (m x)
\biggr. \biggr.$  
    $\displaystyle \biggl. \biggl. \qquad - {2\ell + 1
\over m} j_{\ell - 1} (m x) j_{\ell} (m x) \biggr\} \biggr]_{a}^{b}$ (42)



Peter Haynes