next up previous
Next: About this document ... Up: Preconditioned iterative minimization Previous: The psinc basis

Bibliography

1
M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos.
Iterative minimisation techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients.
Rev. Mod. Phys. 64 (4), 1045 (1992).

2
M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne.
First-principles simulation: ideas, illustrations and the CASTEP code.
J. Phys.: Condens. Matter 14 (11), 2717 (2002).

3
G. Galli.
Linear scaling methods for electronic structure calculations and quantum molecular dynamics simulations.
Current Opinion in Solid State and Materials Science, 1 (6), 864 (1996).

4
S. Goedecker.
Linear scaling electronic structure methods.
Rev. Mod. Phys., 71 (4):1085, 1999.

5
W. Kohn.
Analytic properties of Bloch waves and Wannier functions.
Phys. Rev. 115 (4), 809 (1959).

6
J. des Cloizeaux.
Energy bands and projection operators in a crystal: analytic and asymptotic properties.
Phys. Rev. 135 (3A), A685 (1964).

7
S. Ismail-Beigi and T. A. Arias.
Locality of the density matrix in metals, semiconductors and insulators.
Phys. Rev. Lett. 82 (10), 2127 (1999).

8
L. He and D. Vanderbilt.
Exponential decay properties of Wannier functions and related quantities.
Phys. Rev. Lett. 86 (23), 5341 (2001).

9
J. M. Soler, E. Artacho, J. D. Gale, A. García, P. Junquera, P. Ordejón, and D. Sánchez-Portal.
The SIESTA method for ab initio order-$N$ materials simulation.
J. Phys.: Condens. Matter 14 (11), 2745 (2002).

10
C. E. White, B. G. Johnson, P. M. W. Gill, and M. Head-Gordon.
Linear scaling density functional calculations via the continuous fast multipole method.
Chem. Phys. Lett. 253, 268 (1996).

11
G. E. Scuseria.
Linear scaling density functional calculations with gaussian orbitals.
J. Phys. Chem. A 103 (25), 4782 (1999).

12
E. Hernández, M. J. Gillan, and C. M. Goringe.
Linear-scaling density-functional-theory technique: The density-matrix approach.
Phys. Rev. B 53 (11), 7147 (1996).

13
J. E. Pask, B. M. Klein, P. A. Sterne, and C. Y. Fong.
Finite-element methods in electronic-structure theory.
Comput. Phys. Commun. 135 (1), 1 (2001).

14
J.-L. Fattebert and J. Bernholc.
Towards grid-based $O(N)$ density-functional theory methods: Optimized nonorthogonal orbitals and multigrid acceleration.
Phys. Rev. B 62 (3), 1713 (2000).

15
J. R. Chelikowsky, N. Troullier, and Y. Saad.
Finite-difference-pseudopotential method: Electronic structure calculations without a basis.
Phys. Rev. Lett. 72 (8), 1240 (1994).

16
C.-K. Skylaris, A. A. Mostofi, P. D. Haynes, O. Diéguez, and M. C. Payne.
The non-orthogonal generalized Wannier function pseudopotential plane-wave method.
Phys. Rev. B 66, 035119 (2002).

17
E. Hernández, M. J. Gillan, and C. M. Goringe.
Basis functions for linear-scaling first-principles calculations.
Phys. Rev. B 55 (20), 13485 (1997).

18
J. E. Pask, B. M. Klein, C. Y. Fong, and P. A. Sterne.
Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach.
Phys. Rev. B 59 (19), 12352 (1999).

19
P. D. Haynes and M. C. Payne.
Localised spherical-wave basis set for $O(N)$ total-energy pseudopotential calculations.
Comput. Phys. Commun. 102 (1-3), 17 (1997).

20
A. A. Mostofi, C.-K. Skylaris, P. D. Haynes, and M. C. Payne.
Total-energy calculations on a real space grid with localized functions and a plane-wave basis.
Comput. Phys. Commun. 147, 788 (2002).

21
D. R. Bowler and M. J. Gillan.
Length-scale ill conditioning in linear-scaling DFT.
Comput. Phys. Commun. 112, 103 (1998).

22
P. Hohenberg and W. Kohn.
Inhomogeneous electron gas.
Phys. Rev. 136 (3B), B864 (1964).

23
W. Kohn and L. J. Sham.
Self-consistent equations including exchange and correlation effects.
Phys. Rev. 140 (4A), A1133 (1965).

24
R. O. Jones and O. Gunnarsson.
The density functional formalism, its applications and prospects.
Rev. Mod. Phys. 61 (3), 689 (1989).

25
J. F. Janak.
Proof that $\partial E / \partial n_{i} = \epsilon_{i}$ in density-functional theory.
Phys. Rev. B 18 (12), 7165 (1978).

26
E. Artacho and L. Miláns del Bosch.
Nonorthogonal basis sets in quantum mechanics: Representations and second quantization.
Phys. Rev. A 43 (11), 5770 (1991).

27
C. A. White, P. Maslen, M. S. Lee, and M. Head-Gordon.
The tensor properties of energy gradients within a non-orthogonal basis.
Chem. Phys. Lett. 276, 133 (1997).

28
R. McWeeny.
Some recent advances in density matrix theory.
Rev. Mod. Phys. 32 (2), 335 (1960).

29
N. Marzari, D. Vanderbilt, and M. C. Payne.
Ensemble density-functional theory for ab initio molecular dynamics of metals and finite-temperature insulators.
Phys. Rev. Lett. 79 (7), 1337 (1997).

30
X.-P. Li, R. W. Nunes, and D. Vanderbilt.
Density-matrix electronic-structure method with linear system-size scaling.
Phys. Rev. B 47 (16), 10891 (1993).

31
J. M. Millam and G. E. Scuseria.
Linear scaling conjugate gradient density matrix search as an alternative to diagonalization for first principles electronic structure calculations.
J. Chem. Phys. 106 (13), 5569 (1997).

32
P. D. Haynes and M. C. Payne.
Corrected penalty-functional method for linear-scaling calculations within density functional theory.
Phys. Rev. B 59 (19), 12173 (1999).

33
C. K. Gan, P. D. Haynes, and M. C. Payne.
Preconditioned conjugate gradient method for the sparse generalized eigenvalue problem in electronic structure calculations.
Comput. Phys. Commun. 134, 33 (2001).

34
E. L. Briggs, D. J. Sullivan, and J. Bernholc.
Large-scale electronic-structure calculations with multigrid acceleration.
Phys. Rev. B 52 (8), R5471 (1995).

35
Y. Saad.
Iterative Methods for Sparse Linear Systems (PWS Publishing Company, Boston MA, 1996).

36
M. J. Gillan.
Calculation of the vacancy formation energy in aluminium.
J. Phys.: Condens. Matter 1, 689 (1989).

37
G. H. Golub and C. F. Van Loan.
Matrix Computations (The Johns Hopkins University Press, Baltimore, Maryland, third edition, 1996).

38
L. Kleinman and D. M. Bylander.
Efficacious form for model pseudopotentials.
Phys. Rev. Lett. 48 (20), 1425 (1982).

39
D. M. Ceperley and B. J. Alder.
Ground state of the electron gas by a stochastic method.
Phys. Rev. Lett. 45 (7), 566 (1980).

40
J. P. Perdew and A. Zunger.
Self-interaction correction to density-functional approximations for many-electron systems.
Phys. Rev. B 23 (10), 5048 (1981).

41
O. F. Sankey and D. J. Niklewski.
Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems.
Phys. Rev. B 40 (6), 3979 (1989).



Arash Mostofi 2003-10-27