next up previous
Next: About this document ... Up: Definitions Previous: Definitions

Syntax

Data is input in a `keyword <value>' fashion, and input is independent of the ordering of the input file. The value may be preceded by `=', `:' or a blank space or tab.

The keywords are case insensitive (e.g. unitCell is equivalent to UnItceLL) and punctuation insensitive (unit.cell is equivalent to unit_cell is equivalent to unitcell). Punctuation characters are `.' and `_'.

Physical quantities may be followed by a unit. The quantity will be automatically converted to atomic units, as used internally, when the file is read. The units which are recognised by the code for each physical dimension are listed in Tables 3.1 and 3.2. If no units are provided in the input, the assumed units will be those shown in these tables.

The following are equivalent ways of defining a physical quantity:

AgeOfUniverse = 24.d0 s
Age_Of_Universe : 24.d0 S
AgeOfUniverse 24.d3 ms

The input file can contain comments. These are defined as anything to the right of, and including, `#', `;', or `!'. Blank lines are ignored.

Block data is preceded by `%block <keyword>' followed by a series of lines, terminated by `%endblock <keyword>'.


Table 3.1: The units of length, mass, time, charge energy and force in which physical data may be input and output. The dimensions for which unit conversion is provided are as follows: L = length, M = mass, T = time, C = charge, E = energy, F = force, V = velocity, P = pressure, 1/L = reciprocal length, F/L = Force constant and Vol = Volume. The default for each dimension is indicated by a *. The relative values are given in terms of SI fundamental constants.
Unit Abbreviation Dimension Identifier Value
        (atomic units)
Bohr Bohr L bohr,a0 1
Metre m L m $\frac{m_ec\alpha}{\hbar}$
Centimetre cm L cm $\frac{m_ec\alpha}{\hbar}\times 10^{-2}$
Nanometre nm L nm $\frac{m_ec\alpha}{\hbar}\times 10^{-9}$
Ångstrom* A L ang $\frac{m_ec\alpha}{\hbar}\times 10^{-10}$
Electron Mass m_e M me 1
Unified Atomic Mass Unit* amu M amu $\frac{1}{N_Am_e} \times 10^{-3}$
Kilogram kg M kg $\frac{1}{m_e}$
Gram g M g $\frac{1}{m_e} \times 10^{-3}$
Atomic Unit of Time aut T aut 1
Second s T s $\frac{c^2\alpha^2m_e}{\hbar}$
Millisecond ms T ms $\frac{c^2\alpha^2m_e}{\hbar} \times 10^{-3}$
Microsecond mus T mus $\frac{c^2\alpha^2m_e}{\hbar} \times 10^{-6}$
Nanosecond ns T ns $\frac{c^2\alpha^2m_e}{\hbar} \times 10^{-9}$
Picosecond* ps T ps $\frac{c^2\alpha^2m_e}{\hbar} \times 10^{-12}$
Femtosecond fs T fs $\frac{c^2\alpha^2m_e}{\hbar} \times 10^{-15}$
Elementary Charge* e C e 1
Coulomb Coulomb C c $\frac{1}{e}$
Hartree Ha E hartree,ha 1
Millihartree mHa E mhartree $10^{-3}$
Electron Volt* eV E ev $\frac{e}{\alpha^2m_ec^2}$
Milli-Electron Volt meV E mev $\frac{e}{\alpha^2m_ec^2} \times 10^{-3}$
Rydberg Ry E ry $\frac{1}{2}$
Millirydberg mRy E mry $5 \times 10^{-4}$
kJ/mol kJ/mol E kj/mol $\frac{1\times 10^3}{\alpha^2m_ec^2N_A}$
kcal/mol kcal/mol E kcal/mol $\frac{4.184\times 10^3}{\alpha^2m_ec^2N_A}$
Joule J E j $\frac{1}{\alpha^2m_ec^2}$
Erg erg E erg $\frac{1 \times 10^{-7}}{\alpha^2m_ec^2}$
Hertz Hz E hz $\frac{h}{\alpha^2m_ec^2}$
Megahertz MHz E mhz $\frac{h}{\alpha^2m_ec^2} \times 10^6$
Gigahertz GHz E ghz $\frac{h}{\alpha^2m_ec^2} \times 10^9$
Terahertz THz E thz $\frac{h}{\alpha^2m_ec^2} \times 10^{12}$
Wavenumber cm-1 E cm-1 $\frac{hc}{\alpha^2m_ec^2} \times 10^2$
Kelvin K E k $\frac{k}{\alpha^2m_ec^2}$
Hartree/Bohr Ha/Bohr F hartree/bohr 1
eV/ eV/A F ev/ang $\frac{e\hbar}{\alpha^3m_e^2c^3} \times 10^{10}$
Newton N F n $\frac{\hbar}{\alpha^3m_e^2c^3}$
dyne dyne F dyne $\frac{\hbar}{\alpha^3m_e^2c^3} \times 10^{-5}$



Table 3.2: The units of velocity, pressure, reciprocal length, force constant and volume in which physical data may be input and output. The dimensions for which unit conversion is provided are as follows: L = length, M = mass, T = time, C = charge, E = energy, F = force, V = velocity, P = pressure, 1/L = reciprocal length, F/L = Force constant and Vol = Volume. The default for each dimension is indicated by a *. The relative values are given in terms of SI fundamental constants.
Unit Abbreviation Dimension Identifier Value
        (atomic units)
Atomic Unit of Velocity auv V auv 1
Ångstom/ps* A/ps V ang/ps $\frac{1}{c\alpha}\times 10^2$
Ångstom/fs A/fs V ang/fs $\frac{1}{c\alpha}\times 10^5$
Bohr/ps Bohr/ps V bohr/ps $\frac{\hbar}{c^2\alpha^2m_e} \time 10^{12}$
Bohr/fs Borh/fs V bohr/fs $\frac{\hbar}{c^2\alpha^2m_e} \time 10^{15}$
Metre/Second m/s V m/s $\frac{1}{c\alpha}$
Hartree/Bohr$^3$ Ha/Bohr**3 P hartree/bohr**3 1
eV/Ångstrom$^3$ eV/A**3 P ev/ang**3 $\frac{e\hbar^3}{\alpha^5c^5m_e^4} \times 10^{30}$
Pascal Pa P pa $\frac{\hbar^3}{\alpha^5m_e^4c^5}$
Megapascal MPa P mpa $\frac{\hbar^3}{\alpha^5m_e^4c^5} \times 10^6$
Gigapascal* GPa P gpa $\frac{\hbar^3}{\alpha^5m_e^4c^5} \times 10^9$
Atmosphere Atm P atm $\frac{101325.027 \hbar^3}{\alpha^5m_e^4c^5} \times 10^6$
bar bar P bar $\frac{\hbar^3}{\alpha^5m_e^4c^5} \times 10^5$
Megabar Mbar P mbar $\frac{\hbar^3}{\alpha^5m_e^4c^5} \times 10^{11}$
Bohr$^-1$ 1/Bohr 1/L 1/bohr 1
Metre$^-1$ 1/m 1/L 1/m $\frac{\hbar}{m_ec\alpha}$
Nanometre$^-1$ 1/nm 1/L 1/nm $\frac{\hbar}{m_ec\alpha}\times 10^{9}$
Ångstrom$^-1$* 1/A 1/L 1/ang $\frac{\hbar}{m_ec\alpha}\times 10^{10}$
Hartree/Bohr$^2$ Ha/Bohr**2 F/L ha/bohr**2 1
ev/Ångstrom$^2$* ev/A**2 F/L ev/ang**2 $\frac{e\hbar}{\alpha^3m_e^2c^3} \times 10^{10}$
Newton/metre N/m F/L n/m $\frac{\hbar^2}{\alpha^4m_e^3c^3} $
dyne/centimetre dyne/cm F/L dyne/cm $\frac{\hbar^2}{\alpha^4m_e^3c^3} \times 10^{-3}$
Bohr$^3$ Bohr**3 Vol bohr**3 1
Metre$^3$ m**3 Vol m**3 $\left( \frac{m_ec\alpha}{\hbar} \right)^3$
Centimetre$^3$ cm**3 Vol cm**3 $\left( \frac{m_ec\alpha}{\hbar} \right)^3 \times 10^{-6}$
Nanometre$^3$ nm**3 Vol nm**3 $\left( \frac{m_ec\alpha}{\hbar} \right)^3 \times 10^{-27}$
Angstrom$^3$ A**3 Vol ang**3 $\left( \frac{m_ec\alpha}{\hbar} \right)^3 \times 10^{-30}$



next up previous
Next: About this document ... Up: Definitions Previous: Definitions
Jonathan Yates 2004-04-16