Next: 7.4 Physical interpretation
Up: 7. Computational implementation
Previous: 7.2 Energy gradients
  Contents
7.3 Penalty functional and electron number
The penalty functional
is defined by
The derivative with respect to the density-kernel is then
![\begin{displaymath}
\frac{\partial P[\rho]}{\partial K^{\alpha \beta}}=
2 S_{\be...
...^{kl} S_{lm} )
( \delta^m_{\alpha} - 2 K^{mn} S_{n \alpha} ) .
\end{displaymath}](img994.gif) |
(7.38) |
The penalty functional depends implicitly upon the support functions
though the overlap matrix:
 |
(7.39) |
so that
![\begin{displaymath}
\frac{\delta P[\rho]}{\delta \phi_{\alpha}({\bf r})}=
4 K^{\...
...lta_m^{\beta} - 2 S_{mn} K^{n \beta} ) \phi_{\beta}({\bf r}) .
\end{displaymath}](img996.gif) |
(7.40) |
For the sake of completeness, we now describe the expressions for the
electron number and its derivatives.
 |
(7.41) |
 |
(7.42) |
 |
(7.43) |
Next: 7.4 Physical interpretation
Up: 7. Computational implementation
Previous: 7.2 Energy gradients
  Contents
Peter Haynes